Skip to main content
Log in

Quad-Spectral Perfect Metamaterial Absorber at Terahertz Frequency Based on a Double-Layer Stacked Resonance Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Development of multispectral perfect light absorbers for applications in biological sensing, spectroscopic imaging, and selective thermal emitters is urgently required. Unfortunately, current multispectral absorbers are typically only based on a combination of fundamental resonances of multiple resonators using the design concepts of a coplanar superunit structure or multiple vertically stacked layers, which does not introduce new resonances while such structures are difficult to fabricate. In this work, a type of quad-spectral absorber formed by a double-layer stacked resonant structure is presented and demonstrated. Numerical simulations show that the suggested structure can achieve near 100% absorption at four frequency bands. The quad-spectral absorption results from excitation of two sets consisting of the fundamental mode and third-order resonance of the designed structure. The suggested device is insensitive to the polarization of the incident light due to the high degree of symmetry of the resonance structure. Device parameters are investigated to further explore the physical origin of the quad-spectral absorption. Moreover, it is revealed that the number of resonance peaks can be further increased by employing one more layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).

    Article  Google Scholar 

  2. B. Lukyanchuk, N.I. Zheludev, S.A. Maier, N. Halas, J.P. Nordlander, H. Giessen, and C.T. Chong, Nat. Mater. 9, 707 (2010).

    Article  Google Scholar 

  3. Y.S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, Appl. Phys. Lett. 102, 111908 (2013).

    Article  Google Scholar 

  4. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, Appl. Phys. Lett. 103, 171107 (2013).

    Article  Google Scholar 

  5. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  6. J. Zhao, X. Huang, and H. Yang, Appl. Phys. A 122, 487 (2016).

    Article  Google Scholar 

  7. G.M. Akselrod, J. Huang, T.B. Hoang, P.T. Bowen, L. Su, D.R. Smith, and M.H. Mikkelsen, Adv. Mater. 27, 8028 (2015).

    Article  Google Scholar 

  8. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, Appl. Phys. Lett. 106, 031107 (2015).

    Article  Google Scholar 

  9. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 106, 091907 (2015).

    Article  Google Scholar 

  10. R. Walter, A. Till, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, Adv. Opt. Mater. 3, 398 (2015).

    Article  Google Scholar 

  11. P. Rufangura and C. Sabah, J. Alloys Compd. 671, 43 (2016).

    Article  Google Scholar 

  12. H. Xiong, L.L. Zhong, C.M. Luo, and J.S. Hong, AIP Adv. 5, 067162 (2015).

    Article  Google Scholar 

  13. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, Opt. Express 24, 1518 (2015).

    Article  Google Scholar 

  14. X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 109, 062902 (2016).

    Article  Google Scholar 

  15. B.X. Wang, G.Z. Wang, and L.L. Wang, Plasmonics 11, 523 (2016).

    Article  Google Scholar 

  16. M. Zhong, G.M. Han, S.J. Liu, B.L. Xu, J. Wang, and H.Q. Huang, Phys. E 86, 158 (2017).

    Article  Google Scholar 

  17. B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, and L.L. Wang, J. Appl. Phys. 117, 014504 (2015).

    Article  Google Scholar 

  18. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T.J. Cui, Appl. Phys. Lett. 101, 154102 (2012).

    Article  Google Scholar 

  19. B.X. Wang, IEEE J. Select. Top. Quantum Electron. 23, 4700107 (2017).

    Google Scholar 

  20. B. Lin, S. Zhao, X. Da, Y. Fang, J. Ma, W. Li, and Z. Zhu, J. Appl. Phys. 117, 184503 (2015).

    Article  Google Scholar 

  21. J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, Eur. Phys. J. B 89, 14 (2016).

    Article  Google Scholar 

  22. S. Shang, S. Yang, L. Tao, L. Yang, and H. Cao, AIP Adv. 6, 075203 (2016).

    Article  Google Scholar 

  23. P. Rufangura and C. Sabah, J. Alloys Compd. 680, 473 (2016).

    Article  Google Scholar 

  24. J. Tang, Z. Xiao, K. Xu, X. Ma, and Z. Wang, Plasmonics 11, 1393 (2016).

    Article  Google Scholar 

  25. X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, J. Opt. 17, 055101 (2015).

    Article  Google Scholar 

  26. V.A.L. Mol and C.K. Aanandan, J. Phys. Commun. 1, 015003 (2017).

    Article  Google Scholar 

  27. P. Pitchappa, C.P. Ho, P. Kropelnicki, N. Singh, D.L. Kwong, and C.K. Lee, J. Appl. Phys. 104, 201114 (2014).

    Google Scholar 

  28. M.K. Hedayati, A.U. Zilohu, T. Strunskus, F. Faupel, and M. Elbahri, Appl. Phys. Lett. 104, 041103 (2014).

    Article  Google Scholar 

  29. Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Prermaratne, Opt. Express 22, 16408 (2014).

    Article  Google Scholar 

  30. G. Isic, B. Vasic, D.C. Zografopoulos, R. Beccherelli, and R. Gajic, Phys. Rev. Appl. 3, 064007 (2014).

    Article  Google Scholar 

  31. P. Pitchappa, C.P. Ho, Y.-S. Lin, P. Kropelnicki, C.-Y. Huang, N. Singh, and C. Lee, Appl. Phys. Lett. 104, 151104 (2014).

    Article  Google Scholar 

  32. D. Xiao and K. Tao, Appl. Phys. Express 8, 102001 (2015).

    Article  Google Scholar 

  33. W. Agarwal, A.K. Behera, and M.K. Meshram, Electron. Lett. 52, 340 (2016).

    Article  Google Scholar 

  34. D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, and V.D. Lam, Opt. Commun. 322, 209 (2014).

    Article  Google Scholar 

  35. J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, and Y.P. Lee, Opt. Express 21, 9691 (2013).

    Article  Google Scholar 

  36. G. Dayal and S.A. Ramakrishna, J. Opt. 15, 055106 (2013).

    Article  Google Scholar 

  37. H. Luo, X. Hu, Y. Qiu, and P. Zhou, Solid State Commun. 188, 5 (2014).

    Article  Google Scholar 

  38. S. Liu, H. Chen, and T.J. Cui, Appl. Phys. Lett. 106, 151601 (2015).

    Article  Google Scholar 

  39. S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T.J. Cui, J. Appl. Phys. 118, 245304 (2015).

    Article  Google Scholar 

  40. L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.N. Luo, A.K. Azad, A.J. Taylor, and H.T. Chen, Appl. Phys. Lett. 101, 101102 (2012).

    Article  Google Scholar 

  41. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, and H.T. Chen, Science 340, 6138 (2013).

    Article  Google Scholar 

  42. X.Y. Peng, B. Wang, S. Lai, D.H. Zhang, and J.H. Teng, Opt. Express 20, 27756 (2012).

    Article  Google Scholar 

  43. G. Dayal and S.A. Ramakrishna, J. Opt. 16, 094016 (2014).

    Article  Google Scholar 

  44. B.X. Wang, G.Z. Wang, T. Sang, and L.L. Wang, Sci. Rep. 7, 41373 (2017).

    Article  Google Scholar 

  45. G. Dayal and S.A. Ramakrishna, J. Phys. D 48, 035105 (2015).

    Article  Google Scholar 

  46. B.X. Wang, Plasmonics 12, 95 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11647143), Natural Science Foundation of Jiangsu Province (Grant No. BK20160189), and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51721B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Xin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BX., Xie, Q., Dong, G. et al. Quad-Spectral Perfect Metamaterial Absorber at Terahertz Frequency Based on a Double-Layer Stacked Resonance Structure. J. Electron. Mater. 48, 2209–2214 (2019). https://doi.org/10.1007/s11664-019-06968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06968-3

Keywords

Navigation