Skip to main content
Log in

Efficiency Improvements in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes with Graded Superlattice Last Quantum Barrier and Without Electron Blocking Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with electroluminescence peak wavelength of emission about 289 nm have been investigated by optimizing the last quantum barrier (LQB) in the active region. The results demonstrate that the internal quantum efficiency and radiative recombination rate of DUV-LEDs with a graded superlattice last quantum barrier (GSL LQB) and without an electron blocking layer (EBL) are higher than for other structures under current of 180 mA. Also, the electron and hole leakage currents are reduced for the GSL LQB structure. This structure contributes to effective electron confinement and hole injection owing to increased overlap of electron and hole wavefunctions resulting from low electrostatic fields in the active region. As a result, the optical output power of the structure with a GSL LQB and without an EBL is increased by 1.62 times, and the spontaneous emission intensity by 1.56 times, compared with the conventional structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Y. Ryu, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  2. D. Tobjörk, H. Aarnio, P. Pulkkinen, R. Bollström, A. Määttänen, and P. Ihalainen, Thin Solid Films 520, 2949 (2012).

    Article  Google Scholar 

  3. M.A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, Water Res. 45, 1481 (2011).

    Article  Google Scholar 

  4. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, Semicond. Sci. Technol. 26, 014036 (2011).

    Article  Google Scholar 

  5. S. Zhou, H. Hu, X. Liu, M. Liu, X. Ding, C. Gui, S. Liu, and L. Jay Guo, Jpn. J. Appl. Phys. 56, 111001 (2017).

    Article  Google Scholar 

  6. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, Appl. Phys. Express 10, 031002 (2017).

    Article  Google Scholar 

  7. Y. Guo, Y. Zhang, J. Yan, H. Xie, L. Liu, and X. Chen, Appl. Phys. Lett. 111, 011102 (2017).

    Article  Google Scholar 

  8. H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, and S. Liu, Sci. Rep. 7, 44627 (2017).

    Article  Google Scholar 

  9. Y. Liao, C. Thomidis, C. Kao, and T.D. Moustakas, Appl. Phys. Lett. 98, 081110 (2011).

    Article  Google Scholar 

  10. L. He, W. Zhao, K. Zhang, C. He, H. Wu, N. Liu, W. Song, Z. Chen, and S. Li, Opt. Lett. 43, 515 (2018).

    Article  Google Scholar 

  11. Y. Li, S. Chen, W. Tian, Z. Wu, Y. Fang, J. Dai, and C. Chen, IEEE Photonics J. 5, 8200309 (2013).

    Article  Google Scholar 

  12. L. Lu, Z. Wan, F.J. Xu, B. Shen, C. Lv, M. Jiang, and Q.G. Chen, Phys. Status Solidi 214, 1700461 (2017).

    Article  Google Scholar 

  13. F. Li, L. Wang, G. Zhao, Y. Meng, H. Li, S. Yang, and Z. Wang, Superlattices Microstruct. 110, 324 (2017).

    Article  Google Scholar 

  14. J. Huang, Z. Guo, M. Guo, Y. Liu, S. Yao, J. Sun, and H. Sun, J. Electron. Mater. 46, 4527 (2017).

    Article  Google Scholar 

  15. T. Nishida, T. Makimoto, H. Saito, and T. Ban, Appl. Phys. Lett. 84, 1002 (2004).

    Article  Google Scholar 

  16. W. Tian, Z.H. Feng, B. Liu, H. Xiong, J.B. Zhang, J.N. Dai, S.J. Cai, and C.Q. Chen, Opt. Quant. Electron. 45, 381 (2013).

    Article  Google Scholar 

  17. V. Fiorentini, F. Bernardini, F.D. Sala, A.D. Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).

    Article  Google Scholar 

  18. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327, 60 (2010).

    Article  Google Scholar 

  19. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  20. K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 84, 5264 (2004).

    Article  Google Scholar 

  21. C. Sheng Xia, Z.M. Simon Li, Z.Q. Li, and Y. Sheng, Appl. Phys. Lett. 102, 141101 (2013).

    Article  Google Scholar 

  22. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Innovation Project of Graduate School of South China Normal University, the Science and Technology Program Project for the Innovation of Forefront and Key Technology of Guangdong Province, China (Grant Nos. 2014B010119004, 2014B010121001), the Institute of Science and Technology Collaborative Innovation Major Project of Guangzhou, China (Grant No. 201604010047), and the Special Fund for Scientific and Technological Innovation and Development of Guangzhou—Foreign Science and Technology Cooperation Project, China (Grant No. 201807010083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Sun, H., Huang, J. et al. Efficiency Improvements in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes with Graded Superlattice Last Quantum Barrier and Without Electron Blocking Layer. J. Electron. Mater. 48, 460–466 (2019). https://doi.org/10.1007/s11664-018-6716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6716-5

Keywords

Navigation