Skip to main content
Log in

Study of Deep Ultraviolet Light-Emitting Diodes with a p-AlInN/AlGaN Superlattice Electron-Blocking Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The AlGaN-based deep ultraviolet light-emitting diodes with a p-type Al0.92In0.08N/Al0.55Ga0.45N superlattice electron-blocking layer are studied numerically. The energy band diagrams, radiative recombination rate, electron leakage current, light output power and internal quantum efficiency are investigated. The simulation results show the structure has a low electron leakage current and high hole injection efficiency compared to the original deep ultraviolet light-emitting diodes, which is ascribed to the deep ultraviolet light-emitting diodes with a p-type Al0.92In0.08N/Al0.55Ga0.45N superlattice electron-blocking layer having a low polarization effect on the interface between the last quantum barrier and the electron-blocking layer. As a result, the radiative recombination rate and the light output power are significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Khan, Phys. Status Solidi A 203, 1764 (2006).

    Article  Google Scholar 

  2. V. Bedekar, D.P. Dutta, M. Mohapatra, S.V. Godbole, R. Ghildiyal, and A.K. Tyagi, Nanotechnology 20, 183 (2009).

    Article  Google Scholar 

  3. A. Sandhu, Nat. Photonics 1, 38 (2007).

    Article  Google Scholar 

  4. J. Zhang, W. Tian, F. Wu, W. Yan, H. Xiong, J. Dai, Y. Fang, Z. Wu, and C. Chen, IEEE Photonics J. 5, 1600310 (2013).

    Article  Google Scholar 

  5. S. Srivastava, S.M. Hwang, M. Islam, K. Balakrishnan, V. Adivarahan, and A. Khan, J. Electron. Mater. 38, 2348 (2009).

    Article  Google Scholar 

  6. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status Solidi A 206, 1176 (2009).

    Article  Google Scholar 

  7. C. Yao, G. Yang, Y. Li, R. Sun, Q. Zhang, J. Wang, and S.M. Gao, Opt. Quantum Electron. 48, 1 (2016).

    Article  Google Scholar 

  8. S. Chen, Y. Li, W. Tian, M. Zhang, S. Li, Z. Wu, Y. Fang, J. Dai, and C. Chen, Appl. Phys. A 118, 1357 (2015).

    Article  Google Scholar 

  9. R.H. Horng, W.K. Wang, S.C. Huang, S.Y. Huang, S.H. Lin, C.F. Lin, and D.S. Wuu, J. Cryst. Growth 298, 219 (2007).

    Article  Google Scholar 

  10. T.G. Zhu, U. Chowdhury, J.C. Denyszyn, M.M. Wong, and R.D. Dupuis, J. Cryst. Growth 248, 548 (2003).

    Article  Google Scholar 

  11. Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, and X. Wang, Superlattice Microstruct. 82, 151 (2015).

    Article  Google Scholar 

  12. Y.A. Yin, N. Wang, G. Fan, and Y. Zhang, Superlattice Microstruct. 76, 149 (2014).

    Article  Google Scholar 

  13. L. Gao, F. Xie, and G. Yang, Superlattice Microstruct. 71, 1 (2014).

    Article  Google Scholar 

  14. Y. Shen, Y. Zhang, L. Yu, K. Li, H. Pi, and J. Diao, J. Disp. Technol. 11, 1 (2015).

    Article  Google Scholar 

  15. K.B. Lee, P.J. Parbrook, T. Wang, J. Bai, F. Ranalli, R.J. Airey, and G. Hill, J. Cryst. Growth 311, 2857 (2009).

    Article  Google Scholar 

  16. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, Appl. Phys. Express 3, 031002 (2010).

    Article  Google Scholar 

  17. S.M. Zeng, S.W. Zheng, and G.H. Fan, J. Electron. Mater. 46, 1 (2016).

  18. S. Li, M.E. Ware, J. Wu, V.P. Kunets, M. Hawkridge, P. Minor, Z. Wang, Z. Wu, Y. Jiang, and G.J. Salamo, J. Appl. Phys. 112, 053711 (2012).

    Article  Google Scholar 

  19. S. Li, M. Ware, J. Wu, P. Minor, Z. Wang, Z. Wu, Y. Jiang, and G.J. Salamo, Appl. Phys. Lett. 101, 122103 (2012).

    Article  Google Scholar 

  20. S. Li, T. Zhang, J. Wu, Y. Yang, Z. Wang, Z. Wu, Z. Chen, and Y. Jiang, Appl. Phys. Lett. 102, 062108 (2013).

    Article  Google Scholar 

  21. Crosslight APSYS and technical manuals. Crosslight Software, Inc. Burnaby, Canada. www.crosslight.com.

  22. S.I. Cho, K. Chang, and M.S. Kwon, J. Mater. Sci. 42, 3569 (2007).

    Article  Google Scholar 

  23. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).

    Article  Google Scholar 

  24. W. Tian, Z.H. Feng, B. Liu, H. Xiong, J.B. Zhang, J.N. Dai, S.J. Cai, and C.Q. Chen, Opt. Quantum Electron. 45, 381 (2013).

    Article  Google Scholar 

  25. C.S. Xia, Z.M.S. Li, Z.Q. Li, and Y. Sheng, Appl. Phys. Lett. 102, 013507 (2013).

    Article  Google Scholar 

  26. S.H. Yen and Y.K. Kuo, J. Appl. Phys. 103, 103115 (2008).

    Article  Google Scholar 

  27. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Science and Technology Program Project for the Innovation of Forefront and Key Technology of Guangdong Province, China (Grant Nos. 2014B010121001, 2014B010119004, 2013B010204065, HD15PT003), and the Special Project for Key Science and Technology of Zhongshan City, Guangdong Province, China (Grant Nos. 2014A2FC204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Guo, Z., Guo, M. et al. Study of Deep Ultraviolet Light-Emitting Diodes with a p-AlInN/AlGaN Superlattice Electron-Blocking Layer. J. Electron. Mater. 46, 4527–4531 (2017). https://doi.org/10.1007/s11664-017-5413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5413-0

Keywords

Navigation