Skip to main content
Log in

Wet-Chemical Synthesis of ZnO Nanowires on Low-Temperature Photo-Activated ZnO-rGO Composite Thin Film with Enhanced Photoconduction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A homogeneous dispersion of graphene oxide (GO) and zinc acetate was dip-coated and subsequently photo-annealed by deep UV irradiation to form ZnO-rGO (DUV) nanocomposite thin film. ZnO nanowires were then grown by wet-chemical synthesis on the ZnO-rGO (DUV) thin film. For comparison, ZnO nanowires were also grown on bare ZnO and ZnO-rGO (HT) thin films thermally annealed at 500°C. X-ray diffraction and Raman spectroscopy of ZnO-rGO (DUV) thin film revealed crystallization of ZnO and reduction of GO. The photoluminescence spectra of ZnO nanowires grown on ZnO-rGO (DUV) thin film showed high crystallinity. The current–voltage characteristics of ZnO nanowires grown on ZnO-rGO (DUV) thin film in dark and under UV showed a 15-fold increase in photocurrent as compared to ZnO nanowires grown on ZnO and ZnO-rGO (HT) thin films. The low-temperature photo-activated ZnO-rGO thin films can be used as a template to grow one-dimensional ZnO nanowires with improved structural and optical properties and can pave the way for high-performance flexible device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, and R.S. Ruoff, Carbon 48, 2118 (2010).

    Article  Google Scholar 

  2. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).

    Article  Google Scholar 

  3. M.S. Fuhrer, C.N. Lau, and A.H. MacDonald, MRS Bull. 35, 289 (2010).

    Article  Google Scholar 

  4. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  Google Scholar 

  5. P. Avouris, Nano Lett. 10, 4285 (2010).

    Article  Google Scholar 

  6. D.A.C. Brownson, D.K. Kampouris, and C.E. Banks, J. Power Sour. 196, 4873 (2011).

    Article  Google Scholar 

  7. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).

    Article  Google Scholar 

  8. H. Chang, Z. Sun, K.Y.-F. Ho, X. Tao, F. Yan, W.-M. Kwok, and Z. Zheng, Nanoscale 3, 258 (2011).

    Article  Google Scholar 

  9. H. Lux, P. Siemroth, A. Sgarlata, P. Prosposito, M.A. Schubert, M. Casalboni, and S. Schrader, J. Appl. Phys. 117, 195304 (2015).

    Article  Google Scholar 

  10. S. Park and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  11. O.C. Compton and S.T. Nguyen, Small 6, 711 (2010).

    Article  Google Scholar 

  12. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  13. I.K. Moon, J. Lee, R.S. Ruoff, and H. Lee, Nat. Commun. 1, 73 (2010).

    Article  Google Scholar 

  14. S. Pei and H.M. Cheng, Carbon 50, 3210 (2012).

    Article  Google Scholar 

  15. S.Y. Toh, K.S. Loh, S.K. Kamarudin, and W.R.W. Daud, Chem. Eng. J. 251, 422 (2014).

    Article  Google Scholar 

  16. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, ACS Nano 5, 5038 (2011).

    Article  Google Scholar 

  17. B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee, and S.W. Kim, ACS Nano 5, 4197 (2011).

    Article  Google Scholar 

  18. D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W.K. Choi, Nat. Nanotechnol. 7, 465 (2012).

    Article  Google Scholar 

  19. P. Wang, D. Wang, M. Zhang, Y. Zhu, Y. Xu, X. Ma, and X. Wang, Sens. Actuat. B Chem. 230, 477 (2016).

    Article  Google Scholar 

  20. S.M. Jilani, P. Banerji, and A.C.S. Appl, Mater. Interfaces 6, 16941 (2014).

    Article  Google Scholar 

  21. E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, and C.W. Siong, Ceram. Int. 41, 715 (2015).

    Article  Google Scholar 

  22. S.S. Low, M.T.T. Tan, H.-S. Loh, P.S. Khiew, and W.S. Chiu, Anal. Chim. Acta 903, 131 (2016).

    Article  Google Scholar 

  23. A. Orsini, P.G. Medaglia, D. Scarpellini, R. Pizzoferrato, and C. Falconi, Nanotechnology 24, 355503 (2013).

    Article  Google Scholar 

  24. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M.S. Oh, G.-R. Yi, Y.-Y. Noh, and S.K. Park, Nature 489, 128 (2012).

    Article  Google Scholar 

  25. S.K. Garlapati, J.S. Gebauer, S. Dehm, M. Bruns, M. Winterer, H. Hahn, and S. Dasgupta, Adv. Electron. Mater. 3, 1600476 (2017). https://doi.org/10.1002/aelm.201600476.

  26. R.-J. Chung, Z.-C. Lin, P.-K. Yang, K.-Y. Lai, S.-F. Jen, and P.-W. Chiu, Nanoscale Res. Lett. 8, 350 (2013).

    Article  Google Scholar 

  27. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, and Z.L. Wang, ACS Nano 7, 2617 (2013).

    Article  Google Scholar 

  28. Y. Chen, Z. Hu, Y. Chang, H. Wang, Z. Zhang, and Y. Yang, J. Phys. Chem. C 115, 2563 (2011).

    Article  Google Scholar 

  29. A. Agresti, L. Cinà, S. Pescetelli, B. Taheri, and A. Di Carlo, Vib. Spectrosc. 84, 106 (2016).

    Article  Google Scholar 

  30. R. Pizzoferrato, T. Ziller, A. Micozzi, A. Ricci, C. Lo Sterzo, A. Ustione, C. Oliva, and A. Cricenti, Chem. Phys. Lett. 414, 234 (2005).

    Article  Google Scholar 

  31. A. Chakraborty, A. Agresti, R. Pizzoferrato, F. De Matteis, A. Orsini, and P.G. Medaglia, Mater. Res. Bull. 91, 227 (2017).

    Article  Google Scholar 

  32. I.Y. Bu and M.T. Cole, Ceram. Int. 40, 1099 (2014).

    Article  Google Scholar 

  33. J. Yang, X. Zhao, X. Shan, H. Fan, L. Yang, Y. Zhang, and X. Li, J. Alloys Compd. 556, 1 (2013).

    Article  Google Scholar 

  34. L. Zhong and K. Yun, Int. J. Nanomed. 10, 79 (2015).

    Google Scholar 

  35. H. Kim, Y. Kwon, and Y. Choe, Nanoscale Res. Lett. 8, 240 (2013).

    Article  Google Scholar 

  36. M.S. Kim, K.G. Yim, S. Kim, G. Nam, and J.Y. Leem, J. Sol-Gel. Sci. Technol. 59, 364 (2011).

    Article  Google Scholar 

  37. N.V. Kaneva, D.T. Dimitrov, and C.D. Dushkin, Appl. Surf. Sci. 257, 8113 (2011).

    Article  Google Scholar 

  38. P.K. Labhane, L.B. Patle, V.R. Huse, G.H. Sonawane, and S.H. Sonawane, Chem. Phys. Lett. 661, 13 (2016).

    Article  Google Scholar 

  39. A. Agresti, S. Pescetelli, B. Taheri, A.E. Del Rio Castillo, L. Cinà, F. Bonaccorso, and A. Di Carlo, Chemsuschem 9, 2609 (2016).

    Article  Google Scholar 

  40. A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, and A. Di Carlo, Nano Energy 22, 349 (2016).

    Article  Google Scholar 

  41. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  42. C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng, J. Xu, P. Chen, T. Huang, and Y. Yang, J. Alloys Compd. 654, 371 (2016).

    Article  Google Scholar 

  43. S. Sanjeev and D. Kekuda, IOP Conf. Ser. Mater. Sci. Eng. 73, 012149 (2015). https://doi.org/10.1088/1757-899X/73/1/012149.

  44. R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, Thin Solid Films 473, 58 (2005).

    Article  Google Scholar 

  45. K. Suzuki, L. Malfatti, D. Carboni, D. Loche, M. Casula, A. Moretto, M. Maggini, M. Takahashi, and P. Innocenzi, J. Phys. Chem. C 119, 2837 (2015).

    Article  Google Scholar 

  46. A. Yang, Y. Yang, Z. Zhang, X. Bao, R. Yang, S. Li, and L. Sun, Sci. China Technol. Sci. 56, 25 (2013).

    Article  Google Scholar 

  47. S. Pan and X. Liu, J. Solid State Chem. 191, 51 (2012).

    Article  Google Scholar 

  48. F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu, and L. Li, Opt. Express 22, 11436 (2014).

    Article  Google Scholar 

  49. R. Lotfi Orimi, Opt. Mater. (Amst) 35, 657 (2013).

    Article  Google Scholar 

  50. J.-S. Huang and C.-F. Lin, J. Appl. Phys. 103, 014304 (2008). https://doi.org/10.1063/1.2828172.

  51. B.D. Boruah, D.B. Ferry, A. Mukherjee, and A. Misra, Nanotechnology 26, 235703 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhisek Chakraborty or Roberto Pizzoferrato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Pizzoferrato, R., Agresti, A. et al. Wet-Chemical Synthesis of ZnO Nanowires on Low-Temperature Photo-Activated ZnO-rGO Composite Thin Film with Enhanced Photoconduction. J. Electron. Mater. 47, 5863–5869 (2018). https://doi.org/10.1007/s11664-018-6473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6473-5

Keywords

Navigation