Skip to main content

Advertisement

Log in

Electrochemical and physical properties of ZnO nanosheets and ZnO nanowires, under different applied current densities and deposition approaches

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we study, as a first part, the current density effect on ZnO nanosheets formed through electrochemical deposition. The films are elaborated galvanostatically in a nitrate solution that contain 80 mM \(\hbox {Zn}{(\hbox {NO}_3)}_2\) and 100 mM \((\hbox {KNO}_3)\), by applying current densities of range (\(-0.5\,\hbox {mA}\,\hbox {cm}^{-2}\) and \(-3\,\hbox {mA}\,\hbox {cm}^{-2}\)). The ZnO nanosheets elaborated under \(-2\,\hbox {mA}\,\hbox {cm}^{-2}\) reached a donor density charge of about \(5.36\times 10^{20}\,\hbox {cm}^{-2}\), and photoresponse around \(30\,\upmu \hbox {A}\,\hbox {cm}^{-2}\). As a second part, we study the mode effect onto the ZnO nanosheets and the ZnO nanowires. When the mode transformed from potentio to galvano, the crystallization, the optical transmittance were ameliorated, as well as, the donor carrier density significantly improved. However, under potentiostatic approach, the diameter and the length of the nanowires have been extended. The significant effects on the electrochemical proprieties are collected from Mott–Schottky measurement and photocurrent analyses. Whereas, the structural, optical, and morphological proprieties are obtained through X-ray diffraction, UV–Vis spectrophotometer, Atomic force microscopy, and scanning electron microscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi (b) 244(9), 3027–3073 (2007)

    Article  ADS  Google Scholar 

  2. G. Malik, S. Mourya, J. Jaiswal, R. Chandra, Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Mater. Sci. Semicond. Process. 100, 200–213 (2019)

    Article  Google Scholar 

  3. A. Sarkar, A.K. Katiyar, A.K. Das, S.K. Ray, Si membrane-ZnO heterojunction-based broad band visible light emitting diode for flexible optoelectronic devices. Flex. Print. Electron. 3(2), 025004 (2018)

    Article  Google Scholar 

  4. K. Li, R. Kondrotas, C. Chen, S. Lu, X. Wen, D. Li, J. Luo, Y. Zhao, J. Tang, Improved efficiency by insertion of Zn1–xMgxO through sol–gel method in ZnO/Sb2Se3 solar cell. Sol. Energy 167, 10–17 (2018)

    Article  ADS  Google Scholar 

  5. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ion. 151(1–4), 19–27 (2002)

    Article  Google Scholar 

  6. F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58(1), 010901 (2019)

    Article  ADS  Google Scholar 

  7. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  8. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  ADS  Google Scholar 

  9. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2), 307–312 (2010)

    Article  Google Scholar 

  10. W.I. Park, C.-H. Lee, J.M. Lee, N.-J. Kim, G.-C. Yi, Inorganic nanostructures grown on graphene layers. Nanoscale 3(9), 3522–3533 (2011)

    Article  ADS  Google Scholar 

  11. M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68(17), 2439–2440 (1996)

    Article  ADS  Google Scholar 

  12. S. Peulon, D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv. Mater. 8(2), 166–170 (1996)

    Article  Google Scholar 

  13. Y. Leprince-Wang, A. Yacoubi-Ouslim, G. Wang, Structure study of electrodeposited ZnO nanowires. Microelectron. J. 36(7), 625–628 (2005)

    Article  Google Scholar 

  14. O. Lupan, T. Pauporté, B. Viana, I. Tiginyanu, V. Ursaki, R. Cortes, Epitaxial electrodeposition of ZnO nanowire arrays on p-GAN for efficient UV-light-emitting diode fabrication. ACS Appl. Mater. Interfaces 2(7), 2083–2090 (2010)

    Article  Google Scholar 

  15. M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D Appl. Phys. 40(11), 3326 (2007)

    Article  ADS  Google Scholar 

  16. D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24(17), 9707–9716 (2008)

    Article  Google Scholar 

  17. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, J.A. Switzer, Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13(2), 508–512 (2001)

    Article  Google Scholar 

  18. V. Consonni, J. Briscoe, E. Kärber, X. Li, T. Cossuet, ZnO nanowires for solar cells: a comprehensive review. Nanotechnology 30(36), 362001 (2019)

    Article  Google Scholar 

  19. R. Chen, C. Liu, K. Asare-Yeboah, Z. Zhang, Z. He, Y. Liu, Retracted article: Wavelength modulation of ZnO nanowire based organic light-emitting diodes with ultraviolet electroluminescence. RSC Adv. 10(40), 23775–23781 (2020)

    Article  ADS  Google Scholar 

  20. S. Zhao, Y. Shen, P. Zhou, F. Hao, X. Xu, S. Gao, D. Wei, Y. Ao, Y. Shen, Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sens. Actuators B Chem. 308, 127729 (2020)

    Article  Google Scholar 

  21. T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 451, 166–169 (2004)

    Article  ADS  Google Scholar 

  22. C. Gorla, N. Emanetoglu, S. Liang, W. Mayo, Y. Lu, M. Wraback, H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 85(5), 2595–2602 (1999)

    Article  ADS  Google Scholar 

  23. M. Puchert, P. Timbrell, R. Lamb, Postdeposition annealing of radio frequency magnetron sputtered ZnO films. J. Vac. Sci. Technol. A Vac. Surf. Films 14(4), 2220–2230 (1996)

    Article  ADS  Google Scholar 

  24. S. Eisermann, A. Kronenberger, M. Dietrich, S. Petznick, A. Laufer, A. Polity, B. Meyer, Hydrogen and nitrogen incorporation in ZnO thin films grown by radio-frequency (RF) sputtering. Thin Solid Films 518(4), 1099–1102 (2009)

    Article  ADS  Google Scholar 

  25. C.-W. Kung, H.-W. Chen, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho, Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 22(4), 440–451 (2014)

    Article  Google Scholar 

  26. T. Pauporté, O. Lupan, V. Postica, M. Hoppe, L. Chow, R. Adelung, Al-doped ZnO nanowires by electrochemical deposition for selective VOC nanosensor and nanophotodetector. Phys. status solidi (a) 215(16), 1700824 (2018)

    Article  ADS  Google Scholar 

  27. T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada et al., Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19(1), 17–43 (2009)

    Article  Google Scholar 

  28. L. Mentar, O. Baka, M. Khelladi, A. Azizi, S. Velumani, G. Schmerber, A. Dinia, Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures. J. Mater. Sci.: Mater. Electron. 26(2), 1217–1224 (2015)

    Google Scholar 

  29. G.E. Timuda, K. Waki, Controlling zno nanosheet morphology by galvanostatic electrodeposition. In: ECS Meeting Abstracts, p. 2122 (2016). IOP Publishing

  30. R. Salazar, C. Lévy-Clément, V. Ivanova, Galvanostatic deposition of ZnO thin films. Electrochim. Acta 78, 547–556 (2012)

    Article  Google Scholar 

  31. G.E. Timuda, K. Waki, Galvanostatic electrodeposition of ZnO nanosheet: effect of different applied current densities and deposition times on the nanosheet morphology. Adv. Nat. Sci. Nanosci. Nanotechnol. 11(2), 025005 (2020)

    Article  ADS  Google Scholar 

  32. M. Stumpp, T. Nguyen, C. Lupo, D. Schlettwein, Interplay of different reaction pathways in the pulsed galvanostatic deposition of zinc oxide. Electrochim. Acta 169, 367–375 (2015)

    Article  Google Scholar 

  33. Y. Zhang, X. Zhong, D. Zhang, W. Duan, X. Li, S. Zheng, J. Wang, TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells. Sol. Energy 166, 371–378 (2018)

    Article  ADS  Google Scholar 

  34. H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, Y. Gu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31(11), 1807161 (2019)

    Article  Google Scholar 

  35. S.P. Gupta, A.S. Pawbake, B.R. Sathe, D.J. Late, P.S. Walke, Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B Chem. 293, 83–92 (2019)

    Article  Google Scholar 

  36. Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.-S. Park, L. Jiang, J.H. Kim, S.X. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5(1), 1–9 (2014)

    Article  ADS  Google Scholar 

  37. R. Ivan, C. Popescu, Á.P. del Pino, C. Logofatu, E. György, Carbon-based nanomaterials and ZnO ternary compound layers grown by laser technique for environmental and energy storage applications. Appl. Surf. Sci. 509, 145359 (2020)

    Article  Google Scholar 

  38. Y. Manjula, R.R. Kumar, P.M.S. Raju, G.A. Kumar, T.V. Rao, A. Akshaykranth, P. Supraja, Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting. Chem. Phys. 533, 110699 (2020)

    Article  Google Scholar 

  39. M. Khelladi, L. Mentar, A. Beniaiche, L. Makhloufi, A. Azizi, A study on electrodeposited zinc oxide nanostructures. J. Mater. Sci.: Mater. Electron. 24(1), 153–159 (2013)

    Google Scholar 

  40. R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J. Phys. Chem. C 111(45), 16706–16711 (2007)

    Article  Google Scholar 

  41. J. Elias, R. Tena-Zaera, C. Lévy-Clément, Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621(2), 171–177 (2008)

    Article  Google Scholar 

  42. S.J. Limmer, E.A. Kulp, J.A. Switzer, Epitaxial electrodeposition of ZnO on Au (111) from alkaline solution: exploiting amphoterism in Zn(II). Langmuir 22(25), 10535–10539 (2006)

    Article  Google Scholar 

  43. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation part: I. General considerations. J. Electroanal. Chem. Interfacial Electrochem. 138(2), 225–239 (1982)

    Article  Google Scholar 

  44. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, M. Grätzel, Ultrathin films on copper (I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ. Sci. 5(9), 8673–8681 (2012)

    Article  Google Scholar 

  45. B. Enright, D. Fitzmaurice, Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem. 100(3), 1027–1035 (1996)

    Article  Google Scholar 

  46. M. Izaki, T. Omi, Characterization of transparent zinc oxide films prepared by electrochemical reaction. J. Electrochem. Soc. 144(6), 1949 (1997)

    Article  ADS  Google Scholar 

  47. T. Yamamoto, T. Shiosaki, A. Kawabata, Characterization of ZnO piezoelectric films prepared by RF planar-magnetron sputtering. J. Appl. Phys. 51(6), 3113–3120 (1980)

    Article  ADS  Google Scholar 

  48. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  ADS  Google Scholar 

  49. B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879–889 (1983)

    Article  Google Scholar 

  50. S. Strbac, R.R. Adžić, The influence of pH on reaction pathways for O2 reduction on the Au (100) face. Electrochim. Acta 41(18), 2903–2908 (1996)

    Article  Google Scholar 

  51. S. Jiang, C. Cui, A. Tseung, Reactive deposition of cobalt electrodes: V. Mechanistic studies of oxygen reduction in unbuffered neutral solutions saturated with oxygen. J. Electrochem. Soc. 138(12), 3599 (1991)

    Article  ADS  Google Scholar 

  52. S. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145(3), 864 (1998)

    Article  ADS  Google Scholar 

  53. T. Pauporté, E. Jouanno, F. Pellé, B. Viana, P. Aschehoug, Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature. J. Phys. Chem. C 113(24), 10422–10431 (2009)

    Article  Google Scholar 

  54. R. Könenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C. Levy-Clement, S. Wagner, Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 77(16), 2575–2577 (2000)

    Article  ADS  Google Scholar 

  55. H. Rudigier, E. Bergmann, J. Vogel, Properties of ion-plated tin coatings grown at low temperatures. Surf. Coat. Technol. 36(3–4), 675–682 (1988)

    Article  Google Scholar 

  56. W.-Y. Wu, T.-L. Chen, J.-M. Ting, Effects of seed layer precursor type on the synthesis of ZnO nanowires using chemical bath deposition. J. Electrochem. Soc. 157(8), 177 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Meriem Aloui is grateful to “Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures” for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Aloui.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloui, M., Mentar, L., Beniaiche, A. et al. Electrochemical and physical properties of ZnO nanosheets and ZnO nanowires, under different applied current densities and deposition approaches. Appl. Phys. A 128, 278 (2022). https://doi.org/10.1007/s00339-022-05389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05389-0

Keywords

Navigation