Skip to main content
Log in

Ab Initio and Monte Carlo Approaches for the Magnetocaloric Effect in BaMnO3 Oxide Perovskite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The self-consistent ab initio calculations, based on density functional theory approach (DFT) and using full potential linearised augmented plane wave (FLAPW) method, have been used to investigate both electronic and magnetic properties of the BaMnO3 perovskite. Spin-polarised calculations, including the spin-orbit interaction, are used to determine the energy of the ferromagnetic (FM) and antiferromagnetic (AFM) states of BaMnO3 perovskite. Obtained data from ab initio calculations are used as input for the Monte Carlo simulations to compute other magnetic parameters. Magnetisation, specific heat and magnetic entropy change have been given using the Monte Carlo simulations. The adiabatic temperature change, transition temperature and relative cooling power have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rondinelli, J., Spaldin, N.: American Physical Society, APS March Meeting [Online]. Available: http://meetings.aps.org/link/BAPS.2009.MAR.P10.11 (2009)

  2. Prellier, W., Singh, M.P., Murugavel, P.: J. Phys. Condens. Matter 17, R803–R832 (2005)

    Article  ADS  Google Scholar 

  3. Fiebig, M.: J. Phys. D-Appl. Phys. 38, R123–R152 (2005)

    Article  ADS  Google Scholar 

  4. Ramesh, R., Spaldin, N.A.: Nat. Mater. 38(6), 21–29 (2007)

    Article  ADS  Google Scholar 

  5. Salva, H.R., Seiro, S.S., Ghilarducci, A.A.: Physica B 398, 259–261 (2007)

    Article  ADS  Google Scholar 

  6. Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., Tokura, Y.: Phys. Rev. B 67, 180401–180404 (2003)

    Article  ADS  Google Scholar 

  7. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wutting, M., Ramesh, R.: Science 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  8. Freedman, A.J., Scmid, H.: Magnetoelectric Interaction Phenomena in Crystals. Gordon and Breach, London (1975)

    Google Scholar 

  9. Srinivasan, G., Rasmussen, E.T., Levin, B.V., Hayes, R.: Phys. Rev. B 65, 134402–134407 (2002)

    Article  ADS  Google Scholar 

  10. Cho, K.: Comput. Mater. Sci. 23, 43–47 (2002)

    Article  Google Scholar 

  11. Fang, Q.-L., Zhang, J.-M., Xu, K.-W.: Superlattices Microstruct. 61, 42–49 (2013)

    Article  ADS  Google Scholar 

  12. Li, N., Yao, K.L., Sun, Z.Y., Zhu, L., Gao, G.Y.: J. Appl. Phys. 109, 083715 (2011)

    Article  ADS  Google Scholar 

  13. Moure, C., Pena, O.: J. Magn. Magn. Mater. 337, 1–22 (2013)

    Article  ADS  Google Scholar 

  14. Pecharsky, V.K., Gschneidner, K.A.: Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  15. Wada, H., Tanabe, Y.: Appl. Phys. Lett. 79, 3302 (2001)

    Article  ADS  Google Scholar 

  16. Hu, F., Shen, B., Sun, J.: Appl. Phys. Lett. 76, 3460 (2000)

    Article  ADS  Google Scholar 

  17. Balli, M., Roberge, B., Vermette, J., Jandl, S., Fournier, P., Gospodinov, M.M.: Physica B 478, 77–83 (2015)

    Article  ADS  Google Scholar 

  18. Kumar, N.P., Reddy, P.V.: Mater. Lett. 122, 292–295 (2014)

    Article  Google Scholar 

  19. Blaha, P., Schwartz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Austria (2001). ISBN 3-9501031-1-2

    Google Scholar 

  20. Hardy, A.: Ann. Chim. 1962, 281–301 (1962)

    Google Scholar 

  21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  22. Hamdad, N.: Physica B 406, 1194–1203 (2011)

    Article  ADS  Google Scholar 

  23. Masrour, R., Jabar, A.: Chin. Phys. B 25, 087502 (2016)

    Article  ADS  Google Scholar 

  24. Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Hlil, E.K.: J. Magn. Magn. Mater. 401, 91 (2016)

    Article  ADS  Google Scholar 

  25. Chamberland, B.L., Sleight, A.W., Weiher, J.F.: J. Solid. State. Chem. 1, 506–511 (1970)

    Article  ADS  Google Scholar 

  26. Shen, J., Gao, B., Dong, Q.Y., Li, Y.X., Hu, F.X., Sun, J.R., Shen, B.G.: J. Phys. D: Appl. Phys. 41, 245005–145012 (2008)

    Article  ADS  Google Scholar 

  27. Franco, V., Blaızquez, J.S., Conde, A.: Appl. Phys. Lett. 89, 222512–222514 (2006)

    Article  ADS  Google Scholar 

  28. Numazawa, T., Kamiya, K., Okano, T., Matsumoto, K.: Physica B 329, 1656–1657 (2003)

    Article  ADS  Google Scholar 

  29. Phan, M.-H., Yu, S.-C.: J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masrour, R., Jabar, A., Hlil, E.K. et al. Ab Initio and Monte Carlo Approaches for the Magnetocaloric Effect in BaMnO3 Oxide Perovskite. J Supercond Nov Magn 31, 1083–1088 (2018). https://doi.org/10.1007/s10948-017-4258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4258-3

Keywords

Navigation