Skip to main content
Log in

Microwave-Assisted Size Control of Colloidal Nickel Nanocrystals for Colloidal Nanocrystals-Based Non-volatile Memory Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance–voltage (C–V) and capacitance–time (C–t) response of the fabricated MOS NVM capacitor. The C–V and C–t characteristics depict a large flat band voltage shift (VFB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).

    Article  Google Scholar 

  2. J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014).

    Article  Google Scholar 

  3. J. Zhou, H. Ji, T. Lan, J. Yan, W. Zhou, and X. Miao, J. Electron. Mater. 44, 1 (2015).

    Article  Google Scholar 

  4. C. Ge, C. Wang, K.J. Jin, H.B. Lu, and G.Z. Yang, Nano Micro Lett. 5, 2 (2013).

    Article  Google Scholar 

  5. K.H. Chen, C.M. Cheng, M.C. Kao, K.C. Chang, T.C. Chang, T.M. Tsai, S. Wu, and F.Y. Su, J. Electron. Mater. 46, 4 (2017).

    Google Scholar 

  6. S.F. Wang, C.C. Hsu, J.P. Chu, Y.X. Liu, and L.W. Chen, J. Electron. Mater. 46, 3 (2017).

    Google Scholar 

  7. L. Thomas, G. Jan, J. Zhu, H. Liu, Y.J. Lee, S. Le, R.Y. Tong, K. Pi, Y.J. Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong, T. Torng, and P.K. Wang, J. Appl. Phys. 115, 172615 (2014).

    Article  Google Scholar 

  8. T.C. Chang, F.Y. Jian, S.C. Chen, and Y.T. Tsai, Mater. Today 14, 12 (2011).

    Article  Google Scholar 

  9. J. Wang, X. Zou, X. Xiao, L. Xu, C. Wang, C. Jiang, J.C. Ho, T. Wang, J. Li, and L. Liao, Small 11, 2 (2015).

    Article  Google Scholar 

  10. C. Lee, J. Meteer, V. Narayanan, and E.C. Kan, J. Electron. Mater. 34, 1 (2005).

    Article  Google Scholar 

  11. J. Kondo, M. Lingalugari, P.Y. Chan, E. Heller, and F. Jain, J. Electron. Mater. 44, 9 (2015).

    Article  Google Scholar 

  12. International Technology Roadmap for Semiconductors (ITRS) (2015).

  13. X. Wang, W. Xie, and J.B. Xu, Adv. Mater. 26, 31 (2014).

    Google Scholar 

  14. R.S.R. Velampati, E.S. Hasaneen, E.K. Heller, and F.C. Jain, IEEE Trans. Very Large Scale Integr. Syst. 25, 5 (2017).

    Article  Google Scholar 

  15. G. Zhou, B. Wu, Z. Li, Z. Xiao, S. Li, and P. Li, Curr. Appl. Phys. 15, 3 (2015).

    Google Scholar 

  16. W.L. Liu, P.F. Lee, J.Y. Dai, J. Wang, H.L.W. Chan, C.L. Choy, Z.T. Song, and S.L. Feng, Appl. Phys. Lett. 86, 013110 (2005).

    Article  Google Scholar 

  17. S. Duguay, J.J. Grob, A. Slaoui, Y.L. Gall, and M.A. Liess, J. Appl. Phys. 97, 104330 (2005).

    Article  Google Scholar 

  18. S.J. Ding, H.B. Chen, X.M. Cui, S. Chen, Q.Q. Sun, P. Zhou, H.L. Lu, D.W. Zhang, and C. Shen, Nanoscale Res. Lett. 8, 80 (2013).

    Article  Google Scholar 

  19. J. Kim, D. Son, M. Lee, C. Song, J.K. Song, J.H. Koo, D.J. Lee, H.J. Shim, J.H. Kim, M. Lee, T. Hyeon, and D.H. Kim, Sci. Adv. 2, 1 (2016).

    Google Scholar 

  20. D. Biswas, S. Mondal, A. Rakshit, A. Bose, S. Bhattacharyya, and S. Chakraborty, Mater. Sci. Semicond. Proc. 63, 1 (2017).

    Article  Google Scholar 

  21. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, and C.O. Kappe, Angew. Chem. Int. Ed. 50, 48 (2011).

    Article  Google Scholar 

  22. S. Faraji and F.N. Ani, J. Power Sources 263, 338 (2014).

    Article  Google Scholar 

  23. A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.J. Ahn, and G. Wang, ChemPhysChem 16, 1 (2015).

    Article  Google Scholar 

  24. G. Tian, N. Jia, S. Qi, and D. Wu, J. Electron. Mater. 44, 10 (2015).

    Google Scholar 

  25. E.K. Kim, J.H. Kim, H.K. Noh, and Y.H. Kim, J. Electron. Mater. 35, 4 (2006).

    Google Scholar 

  26. C. Tan, Z. Liu, W. Huang, and H. Zhang, Chem. Soc. Rev. 44, 2615 (2015).

    Article  Google Scholar 

  27. M. Eslamian, Nano Micro Lett. 9, 3 (2017).

    Article  Google Scholar 

  28. M. Yadav, R.S.R. Velampati, D. Mandal, and R. Sharma, Proceedings of the 13th IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC 2017), Hsinchu (2017).

  29. D. Li and S. Komarneni, J. Am. Ceram. Soc. 89, 5 (2006).

    Google Scholar 

  30. M. Kaszuba, D. Mcknight, M.T. Connah, F.K.M. Watson, and U. Nobbmann, J. Nanopart. Res. 10, 5 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Ministry of Electronics and Information Technology, Government of India, and the Indian Institute of Technology Ropar. The authors would like to thank the Indian Institute of Science, Bangalore, for their support in carrying out device fabrication and providing access to the HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Velampati, R.S.R., Mandal, D. et al. Microwave-Assisted Size Control of Colloidal Nickel Nanocrystals for Colloidal Nanocrystals-Based Non-volatile Memory Devices. J. Electron. Mater. 47, 3560–3567 (2018). https://doi.org/10.1007/s11664-018-6200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6200-2

Keywords

Navigation