Skip to main content
Log in

Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The self-assembly of metal nanocrystals including Au, Ag, and Pt on ultrathin oxide for nonvolatile memory applications are investigated. The self-assembly of nanocrystals consists of metal evaporation and selective rapid-thermal annealing (RTA). By controlling process parameters, such as the thickness of the deposited film, the post-deposition annealing temperatures, and the substrate doping concentration, metal nanocrystals with density of 2–4 × 1011 cm−2, diameter less than 8.1 nm, and diameter deviation less than 1.7 nm can be obtained. Observation by scanning-transmission electron microscopy (STEM) and convergent-beam electron diffraction (CBED) shows that nanocrystals embedded in the oxide are nearly spherical and crystalline. Metal contamination of the Si/SiO2 interface is negligible, as monitored by STEM, energy dispersive x-ray spectroscopy (EDX), and capacitance-voltage (C-V) measurements. The electrical characteristics of metal, nanocrystal nonvolatile memories also show advantages over semiconductor counterparts. Large memory windows shown by metal nanocrystal devices in C-V measurements demonstrate that the work functions of metal nanocrystals are related to the charge-storage capacity and retention time because of the deeper potential well in comparison with Si nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.I. Hanafi, S. Tiwari, and I. Khan, IEEE Trans. Electron Dev. 43, 1553 (1996).

    Article  CAS  Google Scholar 

  2. Y. King, T. King, and C. Hu, Tech. Dig., Int. Electron Dev. Meeting, 115 (1998).

  3. Z. Liu, V. Narayanan, M. Kim, G. Pei, and E.C. Kan, Proc. 59th Device Research Conf. (Piscataway, NJ: IEEE, 2001), p. 79.

    Google Scholar 

  4. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, Jpn. J. Appl. Phys. 38, 425 (1999).

    Article  CAS  Google Scholar 

  5. M.H. White, Y. Yang, A. Purwar, and M.L. French, IEEE Trans. Comp. Packag. Manuf. Technol. Part A (Piscataway, NJ: IEEE, 1997), pp. 190–195.

    Google Scholar 

  6. Z. Liu, C. Lee, V. Narayanan, G. Pei, and E.C. Kan, IEEE Trans. Electron Dev. 49, 1606 (2002).

    Article  CAS  Google Scholar 

  7. C. Lee, Z. Liu, and E.C. Kan, Mater. Res. Soc. Symp. Proc. 737, F8.18.1 (2002).

  8. M.H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, J. Nanopart. Res. 1, 243 (1999).

    Article  CAS  Google Scholar 

  9. Y.C. Kang and S.B. Park, J. Aerosol Sci. 26, 1131 (1995).

    Article  CAS  Google Scholar 

  10. N. Kishimoto, Y. Takeda, V.T. Gritsyna, E. Iwamoto, and T. Saito, Proc. Ion Implantation Technology (Piscataway, NJ: IEEE, 1999), pp. 342–345.

    Google Scholar 

  11. J.D. Blauwe, IEEE Trans. Nanotech. 1, 72 (2002).

    Article  Google Scholar 

  12. Z. Liu (Ph.D. thesis, Cornell University, Ithaca, NY, 2002).

    Google Scholar 

  13. H.-C. Lin, E.C. Kan, T. Yamanaka, and C.R. Helms, Proc. Symp. VLSI Technology (Piscataway, NJ: IEEE, 1997), p. 43.

    Google Scholar 

  14. B. Prince, Semiconductor Memories (New York: Wiley, 1991).

    Google Scholar 

  15. J.H. Stathis and D.J. DiMaria, Tech. Dig., Int. Electron Dev. Meeting, 167 (1998).

  16. S.-H. Lo, D.A. Buchanan, Y. Taur, L.-K. Han, and E. Wu, Proc. Symp. VLSI Technology (Piscataway, NJ: IEEE, 1997), p. 149.

    Google Scholar 

  17. G.C. Kuczynski, ed., Sintering Processes (New York: Plenum Press, 1980).

    Google Scholar 

  18. P.W. Voorhees, J. Status Phys. 38, 231 (1985).

    Article  Google Scholar 

  19. K.-N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science (New York: Macmillan, 1992).

    Google Scholar 

  20. G.A. Somorjai, Chemistry in Two Dimensions (Ithaca, NY: Cornell University Press, 1981).

    Google Scholar 

  21. H. Shirakawa and H. Komiyama, J. Nanopart. Res. 1, 17 (1999).

    Article  CAS  Google Scholar 

  22. Z. Liu, M. Kim, V. Narayanan, and E.C. Kan, Superlattice Microstr. 28, 393 (2000).

    Article  CAS  Google Scholar 

  23. H.E. Boyer and T.L. Gall, Metals Handbook (Metals Park, OH: ASM, 1985).

    Google Scholar 

  24. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  CAS  Google Scholar 

  25. R.A. Meyers, Encyclopedia of Physical Science and Technology (New York: Academic Press, 1992).

    Google Scholar 

  26. C.M. Osburn and E.J. Weitzman, J. Electrochem. Soc. 119, 603 (1972).

    Article  CAS  Google Scholar 

  27. Y. Yeo, P. Ranade, Q. Lu, R. Lin, T. King, and C. Hu, Proc. Symp. VLSI Technology (Piscataway, NJ: IEEE, 2001), pp. 49–50.

    Google Scholar 

  28. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Plenum Press, 1996).

    Google Scholar 

  29. N. Jiang and J. Silcox, J. Appl. Phys. 87, 3768 (2000).

    Article  CAS  Google Scholar 

  30. A.S. Eppler, G. Rupprechter, E.A. Anderson, and G.A. Somorjai, J. Phys. Chem. B 104, 7286 (2000).

    Article  CAS  Google Scholar 

  31. L.M. Terman, Solid State Electron. 5, 285 (1962).

    Article  CAS  Google Scholar 

  32. M. Kuhn, Solid State Electron. 13, 873 (1970).

    Article  Google Scholar 

  33. S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, Tech. Dig., Int. Electron Dev. Meeting 521 (1995).

  34. A. Pirovano, A.L. Lacaita, A. Pacelli, and A. Benvenuti, IEEE Trans. Electron Dev. 48, 750 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Meteer, J., Narayanan, V. et al. Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications. J. Electron. Mater. 34, 1–11 (2005). https://doi.org/10.1007/s11664-005-0172-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0172-8

Key words

Navigation