Skip to main content
Log in

Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5–10, 1–2 μm, and 100–300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5–20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10−4 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Joseph, G.J. Phatak, T. Seth, K. Gurunathan, D.P. Amalnerkar, T.R.N. Kutty, in IEEE Conference on Convergent Technologies for the Asia-Pacific Region (2003), pp. 1367–1371.

  2. Y. Li, K.S. Moon, and C.P. Wong, Science 308, 1419 (2005).

    Article  Google Scholar 

  3. Y. Li and C.P. Wong, Mater. Sci. Eng. R Rep. 51, 1 (2006).

    Article  Google Scholar 

  4. I. Krupa, V. Cecen, A. Boudenne, J. Prokes, and I. Novak, Mater. Des. 51, 620 (2013).

    Article  Google Scholar 

  5. L.N. Ho and H. Nishikawa, J. Mater. Sci. Mater. Electron. 26, 7771 (2015).

    Article  Google Scholar 

  6. H.R. Ma, M.Z. Ma, J.F. Zeng, X.H. Guo, and Y.Q. Ma, Mater. Lett. 178, 181 (2016).

    Article  Google Scholar 

  7. J. Li, J.K. Lumpp, in 2006 IEEE Aerospace Conference (2006), pp. 2521–2526.

  8. Y.H. Wang, N.N. Xiong, Z.L. Li, H. Xie, J.Z. Liu, J. Dong, and J.Z. Li, J. Mater. Sci. Mater. Electron. 26, 7927 (2015).

    Article  Google Scholar 

  9. H. Van Luan, H.N. Tien, T.V. Cuong, B.S. Kong, S.C. Jin, E.J. Kim, and S.H. Hur, J. Mater. Chem. 22, 8649 (2012).

    Article  Google Scholar 

  10. B.M. Amoli, A. Hu, N.Y. Zhou, and B. Zhao, J. Mater. Sci. Mater. Electron. 26, 4730 (2015).

    Article  Google Scholar 

  11. I. Mir and D. Kumar, Int. J. Adhes. Adhes. 28, 362 (2008).

    Article  Google Scholar 

  12. X. Peng, F.T. Tan, W. Wang, X.L. Qiu, F.Z. Sun, X.L. Qiao, and J.G. Chen, J. Mater. Sci. Mater. Electron. 25, 1149 (2014).

    Article  Google Scholar 

  13. Y.H. Ji, Y. Liu, G.W. Huang, X.J. Shen, H.M. Xiao, S.Y. Fu, and A.C.S. Appl, Mater. Interfaces 7, 8041 (2015).

    Article  Google Scholar 

  14. D.P. Chen, X.L. Qiao, X.L. Qiu, F.T. Tan, J.G. Chen, and R.Z. Jiang, J. Mater. Sci. Mater. Electron. 21, 486 (2010).

    Article  Google Scholar 

  15. L.H. Fan, B. Su, J.M. Qu, and C.P. Wong, Electron. Compon. Technol. Conf. 1, 148 (2004).

    Google Scholar 

  16. P. Mach, R. Radev, and A. Pietrikova, in Electronics System-Integration Technology Conference (2008), p. 1141.

  17. Z.X. Zhang, X.Y. Chen, and F. Xiao, J. Adhes. Sci. Technol. 25, 1465 (2011).

    Article  Google Scholar 

  18. C. Chen, L. Wang, R.L. Li, G.H. Jiang, H.J. Yu, and T. Chen, J. Mater. Sci. 42, 3172 (2007).

    Article  Google Scholar 

  19. S. Gupta and R. Prakash, Rsc Adv. 4, 7521 (2014).

    Article  Google Scholar 

  20. M.H. Rashid and T.K. Mandal, J. Phys. Chem. C 112, 1304 (2008).

    Article  Google Scholar 

  21. L.D. Rafailovic, C. Gammer, J. Srajer, T. Trisovic, J. Rahel, and H.P. Karnthaler, Rsc Adv. 6, 33348 (2016).

    Article  Google Scholar 

  22. C. Yang, X.Y. Cui, Z.X. Zhang, S. Chiang, W. Lin, H. Duan, J. Li, F.Y. Kang, and C.P. Wong, Nat. Commun. 6, 8150 (2015).

    Article  Google Scholar 

  23. X. Qin, Z.Y. Miao, Y.X. Fang, D. Zhang, J. Ma, L. Zhang, Q. Chen, and X.G. Shao, Langmuir 28, 5218 (2012).

    Article  Google Scholar 

  24. C.D. Gu and T.Y. Zhang, Langmuir 24, 12010 (2008).

    Article  Google Scholar 

  25. M.V. Mandke, S.H. Han, and H.M. Pathan, CrystEngComm 14, 86 (2012).

    Article  Google Scholar 

  26. B. Keita, L.R.B. Holzle, R.N. Biboum, L. Nadjo, I.M. Mbomekalle, S. Franger, P. Berthet, F. Brisset, F. Miserque, and G.A. Ekedi, Eur. J. Inorg. Chem. 2011, 1201 (2011).

    Google Scholar 

  27. L. Wang, H.L. Li, J.Q. Tian, and X.P. Sun, ACS Appl. Mater. Interfaces. 2, 2987 (2010).

    Article  Google Scholar 

  28. G.D. Wei, C.W. Nan, Y. Deng, and Y.H. Lin, Chem. Mater. 15, 4436 (2003).

    Article  Google Scholar 

  29. J.P. Xiao, Y. Xie, R. Tang, M. Chen, and X.B. Tian, Adv. Mater. 13, 1887 (2001).

    Article  Google Scholar 

  30. P. Gao, M. Zhang, H. Hou, and Q. Mao, Mater. Res. Bull. 43, 531 (2008).

    Article  Google Scholar 

  31. Z.J. Wang, F. Tao, D.B. Chen, L.Z. Yao, W.L. Cai, and X.G. Li, Chem. Lett. 36, 672 (2007).

    Article  Google Scholar 

  32. J.X. Fang, H.J. You, P. Kong, Y. Yi, X.P. Song, and B.J. Ding, Cryst. Growth Des. 7, 864 (2007).

    Article  Google Scholar 

  33. Z.Y. Jiang, Y. Lin, and Z.X. Xie, Mater. Chem. Phys. 134, 762 (2012).

    Article  Google Scholar 

  34. L. Polavarapu, K.K. Manga, H.D. Cao, K.P. Loh, and Q.H. Xu, Chem. Mater. 23, 3273 (2011).

    Article  Google Scholar 

  35. T. Akter and W.S. Kim, ACS Appl. Mater. Interfaces. 4, 1855 (2012).

    Article  Google Scholar 

  36. G.X. Zhang, S.H. Sun, M.N. Banis, R.Y. Li, M. Cai, and X.L. Sun, Cryst. Growth Des. 11, 2493 (2011).

    Article  Google Scholar 

  37. R.L. Penn and J.F. Banfield, Science 281, 969 (1998).

    Article  Google Scholar 

  38. J.X. Fang, X.N. Ma, H.H. Cai, X.P. Song, B.J. Ding, and Y. Guo, Appl. Phys. Lett. 89, 173104 (2006).

    Article  Google Scholar 

  39. J.X. Fang, H.J. You, C. Zhu, P. Kong, M. Shi, X.P. Song, and B.J. Ding, Chem. Phys. Lett. 439, 204 (2007).

    Article  Google Scholar 

  40. X.J. Zhang, R. Ji, L.L. Wang, L.T. Yu, J. Wang, B.Y. Geng, and G.F. Wang, CrystEngComm 15, 1173 (2013).

    Article  Google Scholar 

  41. M. Jose-Yacaman, C. Gutierrez-Wing, M. Miki, D.Q. Yang, K.N. Piyakis, and E. Sacher, J. Phys. Chem.B 109, 9703 (2005).

    Article  Google Scholar 

  42. C. Fang, Y. Fan, J.M. Kong, Z.Q. Gao, and N. Balasubramanian, Appl. Phys. Lett. 92, 263108 (2008).

    Article  Google Scholar 

  43. B.M. Amoli, E. Marzbanrad, A. Hu, Y.N. Zhou, and B.X. Zhao, Macromol. Mater. Eng. 299, 739 (2014).

    Article  Google Scholar 

  44. H.R. Ma, J.F. Zeng, S. Harrington, L. Ma, M.Z. Ma, X.H. Guo, and Y.Q. Ma, Nanomaterials 6, 119 (2016).

    Article  Google Scholar 

  45. R. Taherian, M.J. Hadianfard, and A.N. Golikand, J. Appl. Polym. Sci. 128, 1497 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT1161), Program of Science and Technology Innovation Team in Bingtuan (No. 2011CC001). The work was also financially supported by the National Natural Science Foundation of China (No. 11774255), the Key Project of Natural Science Foundation of Tianjin City (No. 17JCZDJC30100) and the Innovation Foundation of Tianjin University (No. 2017XZC-0090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Ma or Lei Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Li, Z., Tian, X. et al. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity. J. Electron. Mater. 47, 2929–2939 (2018). https://doi.org/10.1007/s11664-018-6145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6145-5

Keywords

Navigation