Skip to main content
Log in

Synthesis, Characterization, and Thermal Behavior of Ni3(PO4)2·8H2O·Na3PO4·3.5H2O·0.75Na2SO4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A mixture of anhydrous sodium sulfate, hydrated nickel phosphate, and sodium phosphate has been synthesized and various techniques used to characterize it. Differential scanning calorimetry was used to investigate the thermal properties in both O2 and N2 atmosphere at rate of 10 K min−1. The specific heat capacity was calculated from 298 K to 573 K and vice versa in two thermal cycles in both atmospheres, revealing values of 18,931.64 J kg−1 K−1 in O2 atmosphere and 15,568.39 J kg−1 K−1 in N2 atmosphere in the second thermal cycle, being exothermic in nature in both cases. This exothermic behavior of the mixture indicates its potential use as a heat-dissipating material. The crystallite size of this inorganic heat-dissipating mixture was found to be ~ 22.9 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Serre and G. Ferey, Inorg. Chem. 40, 5350 (2001).

    Article  Google Scholar 

  2. S.C. Lin, S.Y. Chen, S.-Y. Cheng, and J.C. Lin, Solid State Sci. 7, 896 (2005).

    Article  Google Scholar 

  3. A. Aaddane, M. Kacimi, and M. Ziyad, Catal. Lett. 73, 47 (2001).

    Article  Google Scholar 

  4. S. Meseguer, M.A. Tena, C. Gargori, J.A. Nadenes, M. Llusar, and G. Monros, Ceram. Int. 33, 843 (2007).

    Article  Google Scholar 

  5. R.D.A. Gaasbeek, H.G. Toonen, R.J. van Heerwaarden, and P. Buma, Biomaterials 26, 6713 (2005).

    Article  Google Scholar 

  6. M.A. Deyab, K. Eddahaoui, R. Essehli, S. Benmokhtar, T. Rhadfi, A. De Riccardis, and G. Mele, J. Mol. Liq. 216, 699 (2016).

    Article  Google Scholar 

  7. J. Zhao, S. Wang, Z. Run, G. Zhang, W. Du, and H. Pang, Part. Part. Syst. Charact. 32, 880 (2015).

    Article  Google Scholar 

  8. D. Jian, Q. Gao, D. Gao, M. Ruan, and W. Shi, Phys. Lett. A 357, 136 (2006).

    Article  Google Scholar 

  9. N. Guillou, Q. Gao, P.M. Forster, J.S. Chang, S.E. Park, G. Ferey, and A.K. Cheetham, Angew. Chem. Int. Ed. 40, 2831 (2001).

    Article  Google Scholar 

  10. A.K. Cheetham, G. Ferey, and T. Loiseau, Angew. Chem. Int. Ed. 38, 3268 (1999).

    Article  Google Scholar 

  11. N. Guillou, Q. Gao, M. Nogues, A.K. Cheetham, and G. Ferey, Solid State Sci. 4, 1179 (2002).

    Article  Google Scholar 

  12. D. Gao and Q. Gao, Micropor. Mesopor. Mater. 85, 365 (2005).

    Article  Google Scholar 

  13. F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, and S. Ramesh, RSC Adv. 6, 76298 (2016).

    Article  Google Scholar 

  14. T. Swain, J. Therm. Anal. Calorim. 127, 2191 (2017).

    Article  Google Scholar 

  15. T. Swain and G.S. Brahma, J. Inorg. Organomet. Polym. 27, 131 (2017).

    Article  Google Scholar 

  16. T. Swain, J. Ind. Chem. Soc. 91, 277 (2014).

    Google Scholar 

  17. T. Swain, J. Therm. Anal. Calorim. 110, 929 (2012).

    Article  Google Scholar 

  18. T. Swain, J. Therm. Anal. Calorim. 103, 1111 (2011).

    Article  Google Scholar 

  19. J.J. Biendicho, K.-C. Haiso, S. Hull, and A.R. West, Inorg. Chem. 56, 3657 (2017).

    Article  Google Scholar 

  20. A. Omek, Chem. Eng. J. 331, 501 (2018).

    Article  Google Scholar 

  21. C.M. Julien and M. Massot, in, Proceedings of the International Workshop on Advanced Techniques for Energy Sources Investigation and Testing (Sofia, 2004). pp L3-1-L3-17.

  22. A. Periasamy, S. Muruganand, and M. Palaniswamy, Rasayan J. Chem. 2, 981 (2009).

    Google Scholar 

  23. X.-Z. Chen, J.-H. Tang, Y.-N. Cui, M. Liu, and D. Mao, J. Chem. Eng. Data. 59, 481 (2014).

    Article  Google Scholar 

  24. P. Porkodi, V. Yegnaraman, P. Kamaraj, V. Kalyanavalli, and D. Jeyakumar, Chem. Mater. 20, 6410 (2008).

    Article  Google Scholar 

  25. G.K. Willianson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  26. U. Thupakula, A. Jena, A.H. Khan, A. Dalui, and S. Acharya, J. Nanopart. Res. 14, 701 (2012).

    Article  Google Scholar 

  27. A. Ghule, R. Murugan, and H. Chang, Thermochim. Acta 371, 127 (2001).

    Article  Google Scholar 

  28. S.J. Milne and A.R. West, J. Solid State Chem. 57, 166 (1985).

    Article  Google Scholar 

  29. M. Kizilyalli and A.J.E. Welch, J. Inorg. Nucl. Chem. 38, 1237 (1976).

    Article  Google Scholar 

  30. A. Ghule, N. Baskaran, R. Murugan, and H. Chang, Solid State Ionics 161, 291 (2003).

    Article  Google Scholar 

  31. A. Abhat, Sol. Energy 30, 313 (1983).

    Article  Google Scholar 

  32. G. Lane, Latent Heat Materials, vol. 1 (Boca Raton: CRC Press, 1983).

    Google Scholar 

  33. H.P. Garg, S.C. Mullick, and A.K. Bhargava, Solar Thermal Energy Storage (Dordrecht: D. Reidel, 1985).

    Book  Google Scholar 

  34. B. Zalba, J.M. Marin, L.F. Cabeza, and H. Mehling, Appl. Therm. Eng. 23, 251 (2003).

    Article  Google Scholar 

  35. Y. Huang, Y.-C. Lin, D.M. Jenkins, N.A. Chernova, Y. Chung, B. Radhakrishnan, I.-H. Chu, J. Fang, Q. Wang, F. Omenya, S.P. Ong, and M.S. Whittingham, ACS Appl. Mater. Interfaces 8, 7013 (2016).

    Article  Google Scholar 

  36. G.M. Nolis, F. Omenya, R. Zhang, B. Fang, S. Upreti, N.A. Chernova, F. Wang, J. Graetz, Y.-Y. Hu, C.P. Grey, and M.S. Whittingham, J. Mater. Chem. 22, 20482 (2012).

    Article  Google Scholar 

  37. P. Hanggi and G.-L. Ingold, Acta Phys. Pol. B 37, 1537 (2006).

    Google Scholar 

  38. P. Hanggi, G.-L. Ingold, and P. Talkner, N. J. Phys. 10, 115008 (2008). https://doi.org/10.1088/1367-2630/10/11/115008.

    Article  Google Scholar 

  39. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the Indic Institute of Design and Research for providing necessary laboratory facilities for synthesis of this compound. G.S.B. is grateful to the Director, FST, IFHE for granting permission to become associated with this work. T.S. thanks ST&IC, Cochin University of Science and Technology, Cochin for sophisticated measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochan Swain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, T., Brahma, G.S. Synthesis, Characterization, and Thermal Behavior of Ni3(PO4)2·8H2O·Na3PO4·3.5H2O·0.75Na2SO4. J. Electron. Mater. 47, 2817–2823 (2018). https://doi.org/10.1007/s11664-018-6132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6132-x

Keywords

Navigation