Skip to main content
Log in

Synthesis, structural study, optical, dielectric, and electrical properties of a new lead-free C2H5NH3BaCl3 organic–inorganic hybrid perovskite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aim of this research is to elaborate a new lead-free CH3CH2NH3BaCl3 organic–inorganic hybrid perovskite using slow evaporation process at ambient temperature, and to study its structural, microstructural, optical, dielectric, and electrical properties. The X-ray diffraction and Rietveld method analysis exhibit a well crystallized sample in a monoclinic system with the P2/m space group without the presence of a secondary phase. scanning electron microscopy coupled with energy-dispersive X-ray presents a flat surface morphology without impurities or secondary elements, confirming the excellent crystallinity of prepared crystals. Moreover, the Ultraviolet–visible absorption was carried out to identify optical proprieties, that showed a direct bandgap about 4.43 eV. The dielectric measurements present a ferro-paraelectric phase transition with a classic ferroelectric behavior of the material. The electrical properties revealed a non-Debye conduction mechanism, in which the charge carriers require an activation energy around Ea = 0.816 eV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The authors declare that the data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N.I. Selivanov et al., Hybrid organic-inorganic halide post-perovskite 3-cyanopyridinium lead tribromide for optoelectronic applications. Adv. Funct. Mater. 31(37), 1–8 (2021). https://doi.org/10.1002/adfm.202102338

    Article  CAS  Google Scholar 

  2. C. Zhou, H. Lin, S. Lee, M. Chaaban, B. Ma, Organic–inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett. 6(10), 552–569 (2018). https://doi.org/10.1080/21663831.2018.1500951

    Article  CAS  Google Scholar 

  3. R. El Mrabet, S. Kassou, O. Tahiri et al., Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4. Eur. Phys. J. Plus 131, 369 (2016). https://doi.org/10.1140/epjp/i2016-16369-x

    Article  CAS  Google Scholar 

  4. R. El Mrabet, S. Kassou, O. Tahiri, A. Belaaraj, L. El Ammari, M. Saadi, A zero-dimensional hybrid organic-inorganic perovskite ZnCl4 based: synthesis, crystal structure, UV–vis, and electronic properties. J. Cryst. Growth 472, 76–83 (2017). https://doi.org/10.1016/j.jcrysgro.2017.02.026

    Article  ADS  CAS  Google Scholar 

  5. K. Jemli, H. Diab, F. Lédée, G. Trippé-Allard, D. Garrot, B. Geffroy, J.-S. Lauret, P. Audebert, E. Deleporte, Using low temperature photoluminescence spectroscopy to investigate CH3NH3PbI3 hybrid perovskite degradation. Molecules 21(7), 885 (2016). https://doi.org/10.3390/molecules21070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Varadwaj, P.R. Varadwaj, H.M. Marques, K. Yamashita, The pnictogen bond, together with other non-covalent interactions, in the rational design of one-, two- and three-dimensional organic-inorganic hybrid metal halide perovskite semiconducting materials, and beyond. Int. J. Mol. Sci. 23(15), 8816 (2022). https://doi.org/10.3390/ijms23158816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Ettakni et al., Optical and dielectric properties of metal halide perovskites 2D. Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-021-02418-1

    Article  Google Scholar 

  8. D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforsch. B 33(12), 1443–1445 (1978). https://doi.org/10.1515/znb-1978-1214/html

    Article  ADS  Google Scholar 

  9. A. Kojima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  10. H. Souissi, O. Taktak, M. Khalfa, A. Oueslati, S. Kammoun, Experimental and optical studies of the new organic-inorganic. Opt. Mater. 129, 112513 (2022). https://doi.org/10.1016/j.optmat.2022.112513

    Article  CAS  Google Scholar 

  11. M.M. Abdelkader, M. Abdelmohsen, A.I. Aboud, Crystal structure, magnetic susceptibility, dielectric permittivity, and phase transition in a new organic–inorganic hybrid perovskite (n-C8H17NH3)2CoCl4. Chem. Phys. Lett. 770, 138423 (2021). https://doi.org/10.1016/j.cplett.2021.138423

    Article  CAS  Google Scholar 

  12. S.H. Kim, A.R. Lim, Structures, phase transitions, thermodynamic properties, and structural dynamics of eco-friendly hybrid perovskite NH3(CH2)3NH3CoCl4 and NH3(CH2)5NH3CoCl4 crystals. Solid State Sci. 131(June), 106927 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106927

    Article  CAS  Google Scholar 

  13. A. Gannouni, H. Louis, T. Roisnel, B.B. Isang, I. Benjamin, R. Kefi, X-ray crystallography, spectral analysis, DFT studies, and molecular docking of (C9H15N3)[CdCl4] hybrid material against methicillin-resistant Staphylococcus aureus (MRSA). Polycycl. Aromat. Compd. (2023). https://doi.org/10.1080/10406638.2023.2169721

    Article  Google Scholar 

  14. S.K. Abdel-aal, A. Ouasri, Crystal structures, hhirshfeld surfaces analysis, infrared and Raman studies of organic-inorganic hybrid perovskite salts NH3(CH2)nNH3MnCl4 (n = 5, 6). J. Solid State Chem. 314(June), 123401 (2022). https://doi.org/10.1016/j.jssc.2022.123401

    Article  CAS  Google Scholar 

  15. X.H. Lv, W.Q. Liao, P.F. Li, Z.X. Wang, C.Y. Mao, Y. Zhang, Dielectric and photoluminescence properties of a layered perovskite-type organic-inorganic hybrid phase transition compound: NH3(CH2)5NH3MnCl4. J. Mater. Chem. C 4(9), 1881–1885 (2016). https://doi.org/10.1039/c5tc04114g

    Article  CAS  Google Scholar 

  16. N.K. Noel et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k

    Article  CAS  Google Scholar 

  17. R. Kalthoum, M. Ben Bechir, A. Ben Rhaiem, M.H. Dhaou, Optical properties of new organic-inorganic hybrid perovskites (CH3)2NH2CdCl3 and CH3NH3CdCl3 for solar cell applications. Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112084

    Article  Google Scholar 

  18. S. Soudani, E. Jeanneau, C. Jelsch, F. Lefebvre, C. Ben Nasr, H. Longchambon, Structural, crystal structure, Hirshfeld surface analysis and physicochemical studies of a new chlorocadmate template by 1-(2-hydroxyethyl) piperazine. J. Mol. Struct. 1123, 66–74 (2016). https://doi.org/10.1016/j.molstruc.2016.06.024

    Article  ADS  CAS  Google Scholar 

  19. K. Azouzi, B. Hamdi, A. Ben Salah, A new organic-inorganic hybrid compound (C7H7N2)2[Cu2Cl6]: synthesis, crystal structure, hirshfeld surface analysis, vibrational and thermal properties. J. Clust. Sci. 28(5), 3021–3034 (2017). https://doi.org/10.1007/s10876-017-1274-1

    Article  CAS  Google Scholar 

  20. C. Ayari et al., Synthesis, crystal structure, hirshfeld surface, and physicochemical characterization of new salt Bis (2-ethyl-6-methylanilinium) tetrachloromercurate (II)[C9H14N]2HgCl4. J. Chem. (2021). https://doi.org/10.1155/2021/2857369

    Article  Google Scholar 

  21. C. Ayari et al., A new Zn(II) metal hybrid material of 5-nitrobenzimidazolium organic cation (C7H6N3O2)2[ZnCl4]: elaboration, structure, hirshfeld surface, spectroscopic, molecular docking analysis, electric and dielectric properties. Materials 15(22), 7973 (2022). https://doi.org/10.3390/ma15227973

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Ben Mohamed, K. Karoui, A. Ben Rhaiem, Optical, structural characterization and dielectric relaxation of [C2H5NH3]2ZnCl4 compound. Phase Trans. 91(11), 1162–1178 (2018). https://doi.org/10.1080/01411594.2018.1521521

    Article  CAS  Google Scholar 

  23. L. Zhang, J. Wang, F. Han, S. Mo, F. Long, Y. Gao, Crystal structure and electrical conduction of the new organic-inorganic compound (CH2)2(NH3)2CdI4. J. Mol. Struct. 1156, 450–456 (2018). https://doi.org/10.1016/j.molstruc.2017.11.130

    Article  ADS  CAS  Google Scholar 

  24. M.S. Lassoued et al., Structural, vibrational and optical properties of a new self assembled organic–inorganic crystal (C4H7N2) [CdCl3(H2O)]. J. Mater. Sci. Mater. Electron. 28(17), 12698–12710 (2017). https://doi.org/10.1007/s10854-017-7095-z

    Article  CAS  Google Scholar 

  25. A.R. Lim, S.H. Park, Characterization on lead-free hybrid perovskite [NH3(CH2)5NH3]CuCl4: thermodynamic properties and molecular dynamics. Molecules 27, 4546 (2022). https://doi.org/10.3390/molecules27144546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Ben Abdessalem, S. Chkoundali, A. Oueslati, A. Aydi, AC conductivity and phase transition of the BST-BFO ceramic doped with Yb. RSC Adv. 12(42), 27154–27161 (2022). https://doi.org/10.1039/d2ra03371b

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Kalthoum, M. Ben Bechir, A. Ben Rhaiem, “CH3NH3CdCl3: a promising new lead-free hybrid organic–inorganic perovskite for photovoltaic applications. Phys. E Low-Dimens. Syst. Nanostruct. (2020). https://doi.org/10.1016/j.physe.2020.114235

    Article  Google Scholar 

  28. Z.-L. Xiao, H.-Z. Chen, M.-M. Shi, Wu. Gang, R.-J. Zhou, Z.-S. Yang, M. Wang, B.-Z. Tang, Preparation and characterization of organic–inorganic hybrid perovskite (C4H9NH3)2CuCl4. Mater. Sci. Eng. B 117(3), 313–316 (2005). https://doi.org/10.1016/j.mseb.2004.12.052

    Article  CAS  Google Scholar 

  29. M. Khalfa et al., Synthesis, structural and electrical characterization of a new organic inorganic bromide: [(C3H7)4N]2CoBr4. RSC Adv. 12, 2798–2809 (2022). https://doi.org/10.1039/D1RA07965D

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. B.S. Kusmariya, A. Tiwari, A.P. Mishra, G.A. Naikoo, Theoretical and experimental studies of Cu(II) and Zn(II) coordination compounds with N, O donor bidentate Schiff base ligand containing amino phenol moiety. J. Mol. Struct. 1119, 115–123 (2016). https://doi.org/10.1016/j.molstruc.2016.04.056

    Article  ADS  CAS  Google Scholar 

  31. A. Kaiba et al., Synthesis, growth, and characterisation of a novel organic–inorganic perovskite-type hybrid system based on glycine. J. Mol. Struct. 1224, 1 (2021). https://doi.org/10.1016/j.molstruc.2020.129008

    Article  CAS  Google Scholar 

  32. S. Hermi et al., The coordination behavior of two new complexes, [(C7H10NO2)CdCl3]n (I) and [(C7H9NO2)CuCl2] (II), based on 2,6-dimethanolpyridine; elaboration of the structure and Hirshfeld surface, optical, spectroscopic and thermal analysis. Materials 15(5), 1 (2022). https://doi.org/10.3390/ma15051624

    Article  CAS  Google Scholar 

  33. A. Kaiba, F. Al Otaibi, M.H. Geesi, Y. Riadi, T.A. Aljohani, P. Guionneau, A new organic–inorganic hybrid compound (NH3(CH2)C6H4CO2H)[SnCl6]: synthesis, crystal structure, vibrational, optical, magnetic properties and theoretical study. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130129

    Article  Google Scholar 

  34. M.H. Mrad, I. Feddaoui, M.S.M. Abdelbaky, S. García-Granda, C. Ben Nasr, Elaboration, crystal structure, characterization and DFT calculation of a new Hg(II) inorganic-organic hybrid salt [C6H16N2O]HgCl4. J. Solid State Chem. (2020). https://doi.org/10.1016/j.jssc.2020.121280

    Article  Google Scholar 

  35. J.A. Alonso, P. Kayser, B.K. Hong, M.C. Álvarez-Galván, F. Fauth, C.A. López, Mechano-chemical synthesis, structural features and optical gap of hybrid CH3NH3CdBr3 perovskite. Materials (2021). https://doi.org/10.3390/ma14206039

    Article  PubMed  PubMed Central  Google Scholar 

  36. A. Filippov, S. Kurakin, O.I. Gnezdilov, O.N. Antzutkin, Effect of magnetic field on diffusion of ethylammonium nitrate—water mixtures confined between polar glass plates. J. Mol. Liq. 274(2020), 45–51 (2019). https://doi.org/10.1016/j.molliq.2018.10.080

    Article  CAS  Google Scholar 

  37. I. Dhouib, A. Ouasri, P. Guionneau, S. Pechev, Z. Elaoud, Synthesis, molecular structure, vibrational studies, optical properties and electrical conduction mechanism of the new hybrid compound based on selenate. J. Saudi Chem. Soc. 24(12), 996–1009 (2020). https://doi.org/10.1016/j.jscs.2020.10.007

    Article  CAS  Google Scholar 

  38. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  39. H. Elgahami, J. Lhoste, S. Auduste et al., Organic-inorganic hybrid material [(C2H5)4N]2ZnI4: synthesis, thermal behavior and spectroscopic studies. Res. Sq. (2022). https://doi.org/10.21203/rs.3.rs-1468882/v1

    Article  Google Scholar 

  40. S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi, Optical and dielectric properties of self-assembled 0D hybrid organic-inorganic insulator. World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 11(3), 116–120 (2017)

    Google Scholar 

  41. A. Benatia, N. Gouitaa, T. Dine Lamcharfi, F. Abdi, M. Haddad, Effect of calcination temperature and duration on structural and dielectric properties of CaFeO3-δ. Arab. J. Chem. 17(1), 105407 (2024). https://doi.org/10.1016/j.arabjc.2023.105407

    Article  CAS  Google Scholar 

  42. M. Daoudy, N. Gouitaa, F.Z. Ahjyaje, T. Dine Lamcharfi, F. Abdi, BZT substitution effect on the characteristics of (1–x) MT – x BZT composite ceramics synthesized by the sol–gel method. Arab. J. Chem. 17(1), 105392 (2024). https://doi.org/10.1016/j.arabjc.2023.105392

    Article  CAS  Google Scholar 

  43. M.F. Mostafa, S.S. El-khiyami, S.K. Alal, Structure, thermal, and impedance study of a new organic–inorganic hybrid [(CH2)7(NH3)2]CoCl4. J. Phys. Chem. Solids 118, 6–13 (2018). https://doi.org/10.1016/j.jpcs.2018.02.048

    Article  ADS  CAS  Google Scholar 

  44. N. Gouitaa, T. Lamcharfi, M.F. Bouayad, F. Abdi, N.S. Echatoui, N. Hadi, Dielectric anomalies of BaTi1-xFexO3 ceramics for x = 0.0 to 0.6 of Fe doping concentration. Asian J. Chem. 29(10), 2143–2148 (2017). https://doi.org/10.14233/ajchem.2017.20653

    Article  CAS  Google Scholar 

  45. I. Soudani, K. Ben Brahim, A. Oueslati, H. Slimi, A. Aydi, K. Khirouni, Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound. RSC Adv. 12(29), 18697–18708 (2022). https://doi.org/10.1039/d2ra02757g

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.S. Lassoued, H.H. Osman, M.S.M. Abdelbaky, A. Lassoued, S. Ammar, A.B. Salah, A. Gadri, S. García-Granda, Synthesis, crystal structure, DFT (B3LYP/LanL2DZ) and photoluminescence study of new stanate (IV) based inorganic-organic hybrid. J. Phys. Chem. Solids 121, 177–185 (2018). https://doi.org/10.1016/j.jpcs.2018.05.024

    Article  ADS  CAS  Google Scholar 

  47. H. Elgahami, W. Trigui, A. Oueslati, F. Hlel, M. Belhouchet, M. Gargouri, Hirshfeld surface, RMN study, optical properties and dielectric behavior of tetrabutylphosphonium tetrachloroantimonate (III) hybrid. J. Iran. Chem. Soc. 18(9), 2473–2482 (2021). https://doi.org/10.1007/s13738-021-02203-1

    Article  CAS  Google Scholar 

  48. N. Gouitaa, T. Lamcharfi, M. Bouayad, F. Abdi, N. Hadi, Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3 ceramics prepared by solid state method. J. Mater. Sci. Mater. Electron. 29(8), 6797–6804 (2018). https://doi.org/10.1007/s10854-018-8666-3

    Article  CAS  Google Scholar 

  49. I. Gharbi, A. Oueslati, A. Ates, A. Mahmoud, M. Zaghrioui, M. Gargouri, Investigation of structural, morphological, and electrical conductivity study for understanding transport mechanisms of perovskite CH3NH3HgCl3. RSC Adv. 13(15), 10036–10050 (2023). https://doi.org/10.1039/d3ra00671a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. Gouitaa, F.Z. Ahjyaje, T. Lamcharfi, F. Abdi, M. Haddad, Colossal dielectric constant (CDC) response in 0.5CaTiO3–0.5FeTiO3 composites. J. Mater. Res. 38(9), 2486 (2023). https://doi.org/10.1557/s43578-023-00981-3

    Article  ADS  CAS  Google Scholar 

  51. N. Gouitaa, F.Z. Ahjyaje, T. Lamcharfi, F. Abdi, M. Haddad, M. Sajieddine, M. Ounacer, Investigation of relaxor and diffuse dielectric phase transitions of Ba1XBixTi0.8Fe0.2O3 materials. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e16264

    Article  PubMed  PubMed Central  Google Scholar 

  52. K. BenBrahim, M. BenGzaiel, A. Oueslati, M. Gargouri, Electrical conductivity and vibrational studies induced phase transitions in [(C2H5)4N]FeCl4. RSC Adv. 8(71), 40676–40686 (2018). https://doi.org/10.1039/c8ra07671e

    Article  ADS  CAS  Google Scholar 

  53. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  CAS  Google Scholar 

  54. K. Ben Brahim et al., Organic-inorganic interactions revealed by Raman spectroscopy during reversible phase transitions in semiconducting [(C2H5)4N]FeCl4. RSC Adv. 11(30), 18651–18660 (2021). https://doi.org/10.1039/d1ra02475b

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was been carried out in Signals, Systems and Components Laboratory, at University Sidi Mohamed Ben Abdellah, Fez, Morocco. The authors Acknowledge the Innovation Center of the university for their support and assistance in processing the sample utilized in this study. We sincerely thank the reviewers for their considerate corrections and valuable criticisms during the evaluation of the manuscript.

Funding

There is no funding provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

MD: Formal analysis, validation, and writing of the original version. NG: Formal analysis, validation, and writing of the original version. FZA: Formal analysis, validation, and writing of the original version. T-DL: Formal analysis, validation, and writing of the original version. FA: Formal analysis, validation, and writing of the original version.

Corresponding author

Correspondence to Mahjoub Daoudy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoudy, M., Gouitaa, N., Ahjyaje, F.Z. et al. Synthesis, structural study, optical, dielectric, and electrical properties of a new lead-free C2H5NH3BaCl3 organic–inorganic hybrid perovskite. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01318-4

Keywords

Navigation