Skip to main content
Log in

Influence of Bi Substitution on the Microstructure and Dielectric Properties of Gd3Fe5O12 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The exponential growth in microwave communications in recent years demands innovations and high yield microwave materials. Rare earth iron garnets are well known for their remarkable performance in microwave devices owing to their superior features. In this work we investigate the microstructure and dielectric properties of Bismuth substituted Gd3Fe5O12 ceramics prepared by the conventional solid state reaction route. The variation of lattice parameter, microstructure, permittivity, quality factor and temperature coefficient of resonant frequency (τf) of Gadolinium Iron Garnet (GIG) with several concentrations of bismuth was investigated. The Bi3+ ion is effectively incorporated into Gadolinium Iron Garnet, due to which the sintering temperature is considerably reduced, and the densification is improved significantly. Moreover, with increase in Bi concentration, the dielectric constant of GIG also increases, while the quality factor is slightly reduced, which is correlated with the higher ionic polarizability of bismuth. At an appreciably low sintering temperature of 1050°C, Gd2BiFe5O12 possess a porosity corrected relative permittivity value of 27.3 ± 0.2, unloaded quality factor (Qu × f) of 2990 ± 60 GHz (f = 7.3 GHz) and temperature coefficient of resonant frequency + 60 ± 1 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.I. Mohaidat, M. Lataifeh, K. Hamasha, S.H. Mahmood, I. Bsoul, and M. Awawdeh, Mater. Res. 21, 1 (2018).

    Article  Google Scholar 

  2. R. Pauthenet, J. Appl. Phys. 29, 253 (1958).

    Article  Google Scholar 

  3. G.F. Dionne, J. Appl. Phys. 47, 4220 (1976).

    Article  Google Scholar 

  4. T. Yamagishi, J. Awaka, Y. Kawashima, M. Uemura, S. Ebisu, S. Chikazawa, and S. Nagata, Philos. Mag. 85, 1819 (2005).

    Article  Google Scholar 

  5. M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa, and S. Nagata, Philos. Mag. 88, 209 (2008).

    Article  Google Scholar 

  6. C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, and V.G. Harris, J. Appl. Phys. 107, 09A512 (2010).

    Article  Google Scholar 

  7. P. Vaqueiro and M.A. Lopez-Quintela, Chem. Mater. 9, 2836 (1997).

    Article  Google Scholar 

  8. K. Sadhana, S.R. Murthy, and K. Praveena, J. Mater. Sci.: Mater. Electron. 25, 5130 (2014).

    Google Scholar 

  9. P. Hernandez-Gomez, C. De Francisco, C. Torres, J. Iniguez, V. Raposo, J.M. Perdigao, and A.R. Ferreira, Phys. Stat. Sol. C 1, 1792 (2004).

    Google Scholar 

  10. J.C. Waerenborgh, D.P. Rojas, A.L. Shaula, V.V. Kharton, and F.M.B. Marques, Mater. Lett. 58, 3432 (2004).

    Article  Google Scholar 

  11. K. Sadhana, S.E. NainaVinodini, R. Sandhya, and K. Praveena, Adv. Mater. Lett. 6, 717 (2015).

    Article  Google Scholar 

  12. M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999).

    Article  Google Scholar 

  13. A. Paesano Jr, S.C. Zanatta, S.N. De Medeiros, L.F. Cótica, and J.B.M. Da Cunha, Hyperfine Interact. 161, 211 (2005).

    Article  Google Scholar 

  14. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000).

    Article  Google Scholar 

  15. E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, and P.B.A. Fechine, Solid State Phenom. 202, 65 (2013).

    Article  Google Scholar 

  16. M.A. Gilleo, Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, Vol. 2, ed. E.P. Wohlfarth (Amsterdam: Elsevier, 1980), pp. 1–53.

    Google Scholar 

  17. B. Lax and K.J. Button, Microwave Ferrites and Ferri-Magnetics (New York: McGraw-Hill Book, 1962).

    Google Scholar 

  18. J.C. Waerenborgh, D.P. Rojas, A.L. Shaula, V.V. Kharton, and F.M.B. Marques, Mater. Lett. 58, 3432 (2004).

    Article  Google Scholar 

  19. S. Taketomi, C.M. Sorensen, and K.J. Klabunde, J. Magn. Magn. Mater. 222, 54 (2000).

    Article  Google Scholar 

  20. T. Ramesh, R.S. Shinde, and S.R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012).

    Article  Google Scholar 

  21. H.K. Xu, C.M. Sorensen, K.J. Klabunde, and G.C. Hadjipanayis, J. Mater. Res. 7, 712 (1992).

    Article  Google Scholar 

  22. S.C. Zanatta, L.F. Cótica, A. Paesano Jr, S.N. de Medeiros, J.B.M. da Cunhaand, and B. Hallouche, J. Am. Ceram. Soc. 88, 3316 (2005).

    Article  Google Scholar 

  23. C.Y. Tsay, C.Y. Liu, K.S. Liu, I.N. Lin, L.J. Hu, and T.S. Yeh, J. Magn. Magn. Mater. 239, 490 (2002).

    Article  Google Scholar 

  24. R.D. Shannon, J. Appl. Phys. 348, 73 (1993).

    Google Scholar 

  25. D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).

    Article  Google Scholar 

  26. J. Shen, Y. Bai, J. Zhou, and L. Li, J. Am. Ceram. Soc. 88, 3440 (2005).

    Article  Google Scholar 

  27. W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, L. Qiao, J. Cao, and D. Guo, Mater. Res. Bull. 48, 3850 (2013).

    Article  Google Scholar 

  28. J. Varghese, T. Joseph, M.T. Sebastian, N. Reeves-McLaren, and A. Feteira, J. Am. Ceram. Soc. 93, 2960 (2010).

    Article  Google Scholar 

  29. G. Subodh and M.T. Sebastian, J. Am. Ceram. Soc. 90, 2266 (2007).

    Article  Google Scholar 

  30. P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavin, and A.S.B. Sombra, IETMicrow. Antennas Propag. 3, 1191 (2009).

    Article  Google Scholar 

  31. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997).

    Article  Google Scholar 

  32. D. Zhou, J. Li, L.X. Pang, G.H. Chen, Z.M. Qi, D.W. Wang, and I.M. Reaney, ACS Omega. 1, 963 (2016).

    Article  Google Scholar 

  33. G.G. Yao, P. Liu, and H.W. Zhang, J. Am. Ceram. Soc. 96, 1691 (2013).

    Article  Google Scholar 

  34. C.F. Tseng, J. Am. Ceram. Soc. 91, 4101 (2008).

    Article  Google Scholar 

  35. B.D. Silverman, Phys. Rev. 125, 1921 (1962).

    Article  Google Scholar 

  36. M. Rakhi and G. Subodh, J. Eur. Ceram. Soc. 38, 4962 (2018).

    Article  Google Scholar 

  37. E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the SERB Project YSS-000868/2014. Authors also acknowledge the Alexander von Humboldt Foundation for the Vector Network Analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Subodh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, A., Das, S.L., Sibi, K.S. et al. Influence of Bi Substitution on the Microstructure and Dielectric Properties of Gd3Fe5O12 Ceramics. J. Electron. Mater. 48, 1133–1138 (2019). https://doi.org/10.1007/s11664-018-06844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06844-6

Keywords

Navigation