Skip to main content
Log in

Production and Characterization of (004) Oriented Single Anatase TiO2 Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet–visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78–300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Mohammadizadeh, M. Bagheri, S. Aghabagheri, and Y. Abdi, Appl. Surf. Sci. 350, 43 (2015).

    Article  Google Scholar 

  2. K. Eufinger, D. Poelman, H. Poelman, R. D. Gryse, and G.B. Marin, Thin Solid Films: Proc. and Appl. 189 (2008). ISBN: 978-81-7895-314-4.

  3. M.K. Patil, S. Shaikh, and I. Ganesh, Curr. Nanosci. 11, 1 (2015).

    Article  Google Scholar 

  4. A. Tricoli, A.S. Wallerand, and M. Righettoni, J. Mater. Chem. 22, 14254 (2012).

    Article  Google Scholar 

  5. G. Varshneya, S.R. Kanel, D.M. Kempisty, V. Varshney, A. Agrawal, E. Sahle-Demessie, R.S. Varma, and M.N. Nadagoudac, Coord. Chem. Rev. 306, 43 (2016).

    Article  Google Scholar 

  6. V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, and V.V. Atuchin, Microw. Opt. Technol. Lett. 58, 1113 (2016).

    Article  Google Scholar 

  7. V.N. Kruchinin, T.V. Perevalov, V.V. Atuchin, V.A. Gritsenko, A.I. Komonov, I.V. Korolkov, L.D. Pokrovsky, C.W. Shih, and A. Chin, J. Electron. Mater. 46, 6089 (2017).

    Article  Google Scholar 

  8. S.Z. Islam, A. Reed, D.Y. Kim, and S.E. Rankin, Microporous Mesoporous Mater. 220, 120 (2016).

    Article  Google Scholar 

  9. A. Arunachalam, S. Dhanapandian, C. Manoharan, M. Bououdina, G. Ramalingam, M. Rajasekaran, M. Radhakrishnan, and A.M. Ibraheem, Ceram. Int. 42, 11136 (2016).

    Article  Google Scholar 

  10. H. Hansel, H. Zetti, G. Kraush, R. Kisselev, M. Thelakat, and H.W. Schmidt, Adv. Mater. 15, 2056 (2003).

    Article  Google Scholar 

  11. A. Süslü, M. Özdemir, Ç. Tekmen, E. Çelik, and ü. CÖcen, Anadolu ü. Bilim ve Teknoloji Dergisi 10, 277 (2009).

    Google Scholar 

  12. L. Castaneda, J.C. Alonsso, A. Ortiz, E. Andrade, J.M. Saniger, and J.G. Banuelos, Mater. Chem. Phys. 77, 938 (2002).

    Article  Google Scholar 

  13. D. Mardare, F. Iacomi, N. Cornei, M. Girtan, and D. Luca, Thin Solid Films 518, 4586 (2010).

    Article  Google Scholar 

  14. I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanov, and S. Vassilev, J. Photochem. Photobiol. B Biol. 117, 19 (2012).

    Article  Google Scholar 

  15. H.P. Deshmukh, P.S. Shinde, and P.S. Patil, Mater. Sci. Eng. B 130, 220 (2006).

    Article  Google Scholar 

  16. A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138, 105 (2015).

    Article  Google Scholar 

  17. I.O. Acik, N.G. Oyekoya, A. Mere, A. Loot, L. Dolgov, V. Mikli, M. Krunks, and I. Sildos, Surf. Coat. Technol. 271, 27 (2015).

    Article  Google Scholar 

  18. J. Borges, D. Costa, E. Antunes, C. Lopes, M.S. Rodrigues, M. Apreutesei, E. Alves, N.P. Barradas, P. Pedrosa, C. Moura, L. Cunha, T. Polcar, F. Vaz, and P. Sampaio, Vacuum 122, 360 (2015).

    Article  Google Scholar 

  19. A. Anderson and R.L. Binions, Polyhedron 118, 81 (2016).

    Article  Google Scholar 

  20. S. Mondal and D. Basak, J. Lumin. 179, 480 (2016).

    Article  Google Scholar 

  21. A.M.E. Raj, V. Agnes, V.B. Jothy, and C. Sanjeeviraja, Mater. Sci. Semicond. Process. 13, 389 (2010).

    Article  Google Scholar 

  22. A.O. Juma, I.O. Acik, V. Mikli, A. Mere, and M. Krunks, Thin Solid Films 594, 287 (2015).

    Article  Google Scholar 

  23. J.S. Ogorevc, U.L. Stangar, and P. Bukovec, Acta Chim. Slov. 55, 889 (2008).

    Google Scholar 

  24. J. Dostanic, B. Grbic, N. Radic, S. Stojadinovic, R. Vasilic, and Z. Vukovic, Appl. Surf. Sci. 274, 321 (2013).

    Article  Google Scholar 

  25. O. Linnik, N. Shestopal, N. Smirnova, A. Eremenko, O. Korduban, V. Kandyba, T. Kryshchuk, G. Socol, N. Stefan, G. Popescu-Pelin, C. Ristoscu, and I.N. Mihailescu, Vacuum 114, 166 (2015).

    Article  Google Scholar 

  26. L. Lin, H. Wang, H. Luo, and P. Xu, J. Photochem. Photobiol. A Chem. 307–308, 88 (2015).

    Article  Google Scholar 

  27. V.S. Mohite, M.A. Mahadik, S.S. Kumbhar, V.P. Kothavale, A.V. Moholkar, K.Y. Rajpure, and C.H. Bhosalen, Ceram. Int. 41, 2202 (2015).

    Article  Google Scholar 

  28. S. Yildirim, M. Yurddaskal, T. Dikici, I. Aritman, K. Ertekin, and E. Celik, Ceram. Int. 42, 10579 (2016).

    Article  Google Scholar 

  29. S.T. Sundari, N.C. Raut, T. Mathews, P.K. Ajikumar, S. Dash, A.K. Tyagi, and B. Raj, Appl. Surf. Sci. 257, 7399 (2011).

    Article  Google Scholar 

  30. N.C. Raut, T. Mathews, P. Chandramohan, M.P. Srinivasan, S. Dash, and A.K. Tyagi, Mater. Res. Bull. 46, 2057 (2011).

    Article  Google Scholar 

  31. H.D. Chandrashekara, A. Basavaraj, R. Shashidhar, L.C.S. Murthy, and P. Poornima, Mater. Today Proc. 3, 2027 (2016).

    Article  Google Scholar 

  32. A. Conde-Gallardoa, M. Guerreroa, N. Castilloa, A.B. Sotoa, R. Fragosoa, and J.G. Cabanas-Moreno, Thin Solid Films 473, 68 (2005).

    Article  Google Scholar 

  33. T. Supasai, N. Henjongchom, I.M. Tang, F. Deng, and N. Rujisamphan, Sol. Energy 136, 515 (2016).

    Article  Google Scholar 

  34. A. Nakaruk, D. Ragazzon, and C.C. Sorrell, J. Anal. Appl. Pyrolysis 88, 98 (2010).

    Article  Google Scholar 

  35. A. Nakaruk, G. Kavei, and C.C. Sorrell, Mater. Lett. 64, 1365 (2010).

    Article  Google Scholar 

  36. C.T. Kim, Int. J. Nano Stud. Technol. 4, 78 (2015).

    Google Scholar 

  37. M.Z. Obida, H.H. Afify, M.O. Abou-Helal, and H.A.H. Zaid, Egypt. J. Solids 28, 35 (2005).

    Google Scholar 

  38. C.W. Dunnill, Z.A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D.J. Morgan, and I.P. Parkin, J. Mater. Chem. 19, 8747 (2009).

    Article  Google Scholar 

  39. K. Vijayalakshmi, S.D. Jereil, and K. Karthick, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138, 241 (2015).

    Article  Google Scholar 

  40. M. Uzunova-Bujnova, R. Todorovska, M. Milanova, R. Kralchevska, and D. Todorovsky, Appl. Surf. Sci. 256, 830 (2009).

    Article  Google Scholar 

  41. X. Xia, W. Wu, Z. Wang, Y. Bao, Z. Huang, and Y. Gao, Sens. Actuators B 234, 192 (2016).

    Article  Google Scholar 

  42. C. Lu, L. Zhang, Y. Zhang, and S. Liu, Mater. Lett. 185, 342 (2016).

    Article  Google Scholar 

  43. J. Kowalski, A. Sobczyk-Guzenda, H. Szymanowski, and M. Gazicki-Lipman, J. Achiev. Mater. Manuf. Eng. 37, 298 (2009).

    Google Scholar 

  44. L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, B. Hudec, K. Hušeková, K. Fröhlich, and J. Aarik, Thin Solid Films 565, 19 (2014).

    Article  Google Scholar 

  45. S. Khosravani, S.B. Dehaghi, M.B. Askari, and M. Khodadadi, Microelectron. Eng. 163, 67 (2016).

    Article  Google Scholar 

  46. C. Guillen, J. Montero, and J. Herrero, J. Alloys Compd. 647, 498 (2015).

    Article  Google Scholar 

  47. R. Engel-Herbert, B. Jalan, J. Cagnon, and S. Stemmer, J. Cryst. Growth 312, 149 (2009).

    Article  Google Scholar 

  48. D.V. Gritsenko, S.S. Shaœmeev, V.V. Atuchin, T.I. Grigor’eva, L.D. Pokrovskiœ, O.P. Pchelyakov, V.A. Gritsenko, A.L. Aseev, and V.G. Lifshits, Phys. Solid State 48, 224 (2006).

    Article  Google Scholar 

  49. B. Stefanov and L. Österlund, Coatings 4, 587 (2014).

    Article  Google Scholar 

  50. S.C. Lee, H. Yu, J. Yu, and C.H. Ao, J. Cryst. Growth 295, 60 (2006).

    Article  Google Scholar 

  51. E.F. Kaelble, Handbook of X-Rays for Diffraction, Emission, Absorption and Microscopy (New York: McGraw-Hill, 1967), pp. 1–25.

    Google Scholar 

  52. O. Vigil, F. Cruz, A.M. Acevedo, G.C. Puente, L. Vaillant, and G. Santana, Mater. Chem. Phys. 68, 249 (2001).

    Article  Google Scholar 

  53. S. Kurtaran, I. Akyuz, and F. Atay, Appl. Surf. Sci. 265, 709 (2013).

    Article  Google Scholar 

  54. F. Atay, V. Bilgin, I. Akyuz, E. Ketenci, S. Kose, and J. Non-Cryst, Solids 356, 2192 (2010).

    Google Scholar 

  55. A.E.J. Ganzalez and S.G. Santiago, Semicond. Sci. Technol. 22, 709 (2007).

    Article  Google Scholar 

  56. A.L.J. Pereira, P.N.L. Filho, J. Acuna, I.S. Brandt, A.A. Pasa, A.R. Zanatta, J. Vilcarromero, A. Beltran, and J.H. Dias da Silva, J. Appl. Phys. 111, 113513 (2012).

    Article  Google Scholar 

  57. C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res. 9, 3 (2016).

    Article  Google Scholar 

  58. A. Yıldız, S.B. Lisesivdin, M. Kasap, and D. Mardare, Optoelectron. Adv. Mater. 1, 531 (2007).

    Google Scholar 

  59. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, and J. Non-Cryst, Solids 354, 4944 (2008).

    Google Scholar 

  60. I. Oja, A. Mere, M. Krunks, R. Nisumaa, C.H. Solterbeck, and M. Es-Souni, Thin Solid Films 515, 674 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Eskisehir Osmangazi University Scientific Research Projects Commission for providing financial support under the Project No. of 2012-19005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhunde Atay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atay, F., Akyuz, I., Cergel, M.S. et al. Production and Characterization of (004) Oriented Single Anatase TiO2 Films. J. Electron. Mater. 47, 1601–1610 (2018). https://doi.org/10.1007/s11664-017-5988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5988-5

Keywords

Navigation