Skip to main content
Log in

Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20–250°C, 1–5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22–64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy’s β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Swenson, J. Electron. Mater. 18, 39 (2007).

    Article  Google Scholar 

  2. Y.-C. Huang, S.-W. Chen, and K.-S. Wu, J. Electron. Mater. 39, 109 (2010).

    Article  Google Scholar 

  3. J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984).

    Article  Google Scholar 

  4. T.R. Bieler, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  Google Scholar 

  5. T.K. Lee, T.R. Bieler, C.U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Boston, MA, USA: Springer, 2015).

    Book  Google Scholar 

  6. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004).

    Article  Google Scholar 

  7. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).

    Article  Google Scholar 

  8. B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362 (2012).

    Article  Google Scholar 

  9. D. Turnbull and R.E. Cech, J. Appl. Phys. 21, 804 (1950).

    Article  Google Scholar 

  10. D. Turnbull, J. Chem. Phys. 18, 768 (1950).

    Article  Google Scholar 

  11. D. Turnbull, J. Chem. Phys. 18, 769 (1950).

    Article  Google Scholar 

  12. D. Turnbull, J. Chem. Phys. 20, 411 (1952).

    Article  Google Scholar 

  13. J.H. Perepezko, Mater. Sci. Eng. A 226–228, 374 (1997).

    Article  Google Scholar 

  14. J.H. Perepezko and G. Wilde, Curr. Opin. Solid State Mater. Sci. 20, 3 (2016).

    Article  Google Scholar 

  15. Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloys Compd. 682, 326 (2016).

    Article  Google Scholar 

  16. S.A. Belyakov and C.M. Gourlay, Acta Mater. 71, 56 (2014).

    Article  Google Scholar 

  17. H. Shang, Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloys Compd. 715, 471 (2017).

    Article  Google Scholar 

  18. K.N. Reeve, J.R. Holaday, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, J. Phase Equilib. Diffus. 37, 369 (2016).

    Article  Google Scholar 

  19. A. Ohno and T. Motegi, J. Jpn. Inst. Met. 37, 777 (1973).

    Article  Google Scholar 

  20. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, and O. Unal, J. Electron. Mater. 30, 1050 (2001).

    Article  Google Scholar 

  21. K.S.S. Kim, S.H.H. Huh, and K. Suganuma, Microelectron. Reliab. 43, 259 (2003).

    Article  Google Scholar 

  22. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).

    Article  Google Scholar 

  23. L.-W. Lin, J.-M. Song, Y.-S. Lai, Y.-T. Chiu, N.-C. Lee, and J.-Y. Uan, Microelectron. Reliab. 49, 235 (2009).

    Article  Google Scholar 

  24. I.E. Anderson, J. Walleser, and J.L. Harringa, JOM 59, 38 (2007).

    Article  Google Scholar 

  25. I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).

    Article  Google Scholar 

  26. A.J. Boesenberg, I.E. Anderson, and J.L. Harringa, J. Electron. Mater. 41, 1868 (2012).

    Article  Google Scholar 

  27. K. Sweatman, T. Nishimura, S.D. McDonald, M. Whitewick, and K. Nogita, SMT Mag. 29, 30 (2014).

    Google Scholar 

  28. K.N. Reeve, I.E. Anderson, and C.A. Handwerker, J. Electron. Mater. 44, 842 (2015).

    Article  Google Scholar 

  29. S.D. McDonald, K. Nogita, J. Read, T. Ventura, and T. Nishimura, J. Electron. Mater. 42, 256 (2012).

    Article  Google Scholar 

  30. J.W. Xian, S.A. Belyakov, T.B. Britton, and C.M. Gourlay, J. Alloys Compd. 619, 345 (2015).

    Article  Google Scholar 

  31. J.W. Xian, S.A. Belyakov, and C.M. Gourlay, J. Electron. Mater. 45, 69 (2015).

    Article  Google Scholar 

  32. K.N. Reeve, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, Metall. Mater. Trans. A 47, 6507 (2016).

    Article  Google Scholar 

  33. K.N. Reeve, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, Metall. Mater. Trans. A 47, 6526 (2016).

    Article  Google Scholar 

  34. W.S. Rasband, in ImageJ (U.S. National Institutes of Health, Bethseda, 1997–2017), https://imagej.nih.gov/ij/. Accessed 11 April 2017.

  35. N. Ponweiser, C.L. Lengauer, and K.W. Richter, Intermetallics 19, 1737 (2011).

    Article  Google Scholar 

  36. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, and E.O. Ristolainen, Mater. Sci. Eng. A 420, 55 (2006).

    Article  Google Scholar 

  37. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, T.G. Hoe, F.X. Che, and A.N. Abood, J. Electron. Mater. 41, 2073 (2012).

    Article  Google Scholar 

  38. B. Arfaei, M. Benedict, and E.J. Cotts, J. Appl. Phys. 114, 173506 (2013).

    Article  Google Scholar 

  39. B. Vonnegut, J. Colloid Sci. 3, 563 (1948).

    Article  Google Scholar 

  40. G.M. Pound and V.K. La Mer, J. Am. Chem. Soc. 74, 2323 (1952).

    Article  Google Scholar 

  41. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Ames Laboratory (US-DOE), Purdue University, and Nihon Superior supported this work through Ames Lab Contract No. DE-AC02-07CH11358. Additional funding was provided through government support under and awarded by the DoD Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The research group is grateful for the financial support, advice, and guidance provided by Tetsuro Nishimura and Keith Sweatman of Nihon Superior and for the assistance of Fukuda Co. in producing the drip atomized solder samples presented in this paper. The authors would like to thank Iver Anderson (andersoni@ameslab. gov) of Ames Laboratory and Stephanie Choquette (smc1@iastate.edu) of Iowa State University for their help in facilitating and communicating with Fukuda Co. during the production of the atomized solders and for initial EDS examination of the Sn-Cu-Al as-solidified solder alloy. The authors would also like to thank John Holaday (jholaday@purdue.edu) of Purdue University for calculating the discussed Thermo-Calc solidification path for the Sn-Ag-Cu-Al alloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathlene N. Reeve.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeve, K.N., Handwerker, C.A. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys. J. Electron. Mater. 47, 61–76 (2018). https://doi.org/10.1007/s11664-017-5819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5819-8

Keywords

Navigation