Skip to main content
Log in

Preparation and properties of Co3O4 nanorods as supercapacitor material

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Co3O4 nanorods have been successfully synthesized by thermal decomposition of the precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the first time. The obtained Co3O4 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The results demonstrate that the as-synthesized nanorods are single crystalline with an average diameter of about 20 to 50 nm and length up to several micrometers. Preliminary electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements, are carried out in 6 M KOH electrolyte. Specific capacitance of 456 F g−1 for a single electrode could be achieved even after 500 cycles, suggesting its potential application in electrochemical capacitors. This promising method could provide a universal green chemistry approach to synthesize other low-cost and environmentally friendly transition metal hydroxide or oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  2. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207

    Article  CAS  Google Scholar 

  3. Sarangapani S, Tilak BV, Chen CP (1996) J Electrochem Soc 143:3791

    Article  CAS  Google Scholar 

  4. Zheng JP, Jow TR (1995) J Electrochem Soc 142:6

    Article  Google Scholar 

  5. Kuo C, Mare AA (1996) J Electrochem Soc 143:124

    Article  Google Scholar 

  6. Yuan CZ, Gao B, Su LH, Zhang XG (2008) Solid State Ion 178:1859

    Article  CAS  Google Scholar 

  7. Cao L, Zhao YK, Lu M, Li HL (2003) J Chin Sci Bull 48:1212

    Article  CAS  Google Scholar 

  8. Liu Y, Zhao WW, Zhang XG (2008) Electrochim Acta 8:3296

    Article  Google Scholar 

  9. Wang Y, Zhang WS, Evans DG, Duan X (2005) J Electrochem Soc 152:A2130

    Article  Google Scholar 

  10. Chang JK, Lin CT, Tsai WT (2004) Electrochem Commun 6:666

    Article  CAS  Google Scholar 

  11. Pang SC, Anderson AM, Chapman TW (2000) J Electrochem Soc 147:444

    Article  CAS  Google Scholar 

  12. Zhao DD, Bao SJ, Zhao WJ, Hu HL (2007) Electrochem Commun 9:869

    Article  CAS  Google Scholar 

  13. Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 16:1853

    Article  CAS  Google Scholar 

  14. Natile MM, Glisenti A (2003) Chem Mater 15:2502

    Article  CAS  Google Scholar 

  15. Wang X, Chen XY, Gao LS, Zheng HG, Zhang ZD, Qian YT (2004) J Phys Chem B 108:16401

    Article  CAS  Google Scholar 

  16. Cao AM, Hu JS, Liang HP (2006) J Phys Chem B 110:15858

    Article  CAS  Google Scholar 

  17. Barrera E, Viveros T, Montoya A, Ruiz M (1999) J Sol Energy Mater Sol Cells 57:127

    Article  CAS  Google Scholar 

  18. Feng J, Zeng HC (2003) Chem Mater 15:2829

    Article  CAS  Google Scholar 

  19. Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:1439

    Article  Google Scholar 

  20. Zhang XJ, Li QL (2008) Mater Lett 62:988

    Article  CAS  Google Scholar 

  21. Zhu YJ, Wang WW, Qi RJ, Hu XL (2004) Angew Chem Int Ed Engl 43:1410

    Article  CAS  Google Scholar 

  22. Yu WY, Tu WX, Liu HF (1999) Langmuir 15:6

    Article  CAS  Google Scholar 

  23. Zhang XJ, Jiang W, Song D, Liu JX, Li FS (2008) Mater Lett 62:2343

    Article  CAS  Google Scholar 

  24. Liu YK, Wang GH, Xu CK, Wang WZ (2002) Chem Commun 1486

  25. Beach E, Brown S, Shqau K, Mottern M, Warchol Z, Morris P (2008) Mater Lett 62(12–13):1957

    Article  CAS  Google Scholar 

  26. Dong LH, Chu Y, Liu Y, Li MY, Yang FY, Li LL (2006) J Colloid Interface Sci 301:503

    Article  CAS  Google Scholar 

  27. Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the National Natural Science Foundation of China (No.20663006). We also thank Scientific Research Program of the Higher Education Institution of Xinjiang (XJEDU2006S206) for partial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, L., Li, J. & Zhang, XG. Preparation and properties of Co3O4 nanorods as supercapacitor material. J Appl Electrochem 39, 1871–1876 (2009). https://doi.org/10.1007/s10800-009-9891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9891-5

Keywords

Navigation