Skip to main content
Log in

Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Ti3SiC2/glass composite coatings were prepared by atmospheric plasma spraying. There are no evident microcracks between Ti3SiC2 and glass matrix due to low residual stress resulting from the matching CTE of them. The XRD patterns of the as-sprayed Ti3SiC2/glass composite coatings are composed of glass matrix, Ti3SiC2, TiC, and a small amount of Ti5Si3. The short dwell time and quite low oxygen partial pressure in plasma jet flow restrain TiC and Ti5Si3 from further oxidation. Both the real and imaginary part of the complex permittivity increase with rising Ti3SiC2 content. The coating with 25 wt% Ti3SiC2 possesses excellent microwave absorption properties. The minimum reflection loss is −47.7 dB (> 99.99 % absorption) at 10.6 GHz with a thickness of 1.4 mm and the bandwidth (<−5 dB) can be obtained in the frequency range of 8.2–12.4 GHz. The impedance matching and dielectric loss of the coating result in the microwave absorption properties improved. The enhanced microwave absorption performance suggests that the Ti3SiC2/glass coating could be a good candidate for highly efficient microwave absorption material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z, Tang C, Tan P, Deng C, Matitsine S (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58:203–259

    Article  Google Scholar 

  2. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301

    Article  Google Scholar 

  3. Najim M, Modi G, Mishra YK, Adelung R, Singh D, Agarwala V (2015) Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano-and microstructures. Phys Chem Chem Phys 17:22923–22933

    Article  Google Scholar 

  4. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, Chen Y (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27:2049–2053

    Article  Google Scholar 

  5. Wei J, Liu X, Cui Z-K, Gu J, Li X, Qian J, Lin S, Zhuang Q (2016) Preparation of MWNT-g-poly (2,5-benzoxazole) (ABPBO) with excellent electromagnetic absorption properties in the Ku band via atom transfer radical polymerization (ATRP). J Mater Sci 51:7370–7382. doi:10.1007/s10853-016-0027-0

    Article  Google Scholar 

  6. Liu H, Tian H (2012) Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. J Eur Ceram Soc 32:2505–2512

    Article  Google Scholar 

  7. Duan W, Yin X, Li Q, Schlier L, Greil P, Travitzky N (2016) A review of absorption properties in silicon-based polymer derived ceramics. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2016.02.002

    Google Scholar 

  8. Melvin G-J-H, Ni Q-Q, Suzuki Y, Natsuki T (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49:5199–5207. doi:10.1007/s10853-014-8229-9

    Article  Google Scholar 

  9. Durmus Z, Durmus A, Kavas H (2014) Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J Mater Sci 50(3):1201–1213. doi:10.1007/s10853-014-8676-3

    Article  Google Scholar 

  10. Yu M, Yang P, Fu J, Liu S (2015) Flower-like carbonyl iron powder modified by nanoflakes: preparation and microwave absorption properties. Appl Phys Lett 106:161904

    Article  Google Scholar 

  11. Vinayasree S, Soloman M, Sunny V, Mohanan P, Kurian P, Anantharaman M (2013) A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos Sci Technol 82:69–75

    Article  Google Scholar 

  12. Lu M-M, Cao W-Q, Shi H-L, Fang X-Y, Yang J, Hou Z-L, Jin H-B, Wang W-Z, Yuan J, Cao M-S (2014) Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A 2:10540–10547

    Article  Google Scholar 

  13. Ren Y, Li S, Dai B, Huang X (2014) Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose. Appl Surf Sci 311:1–4

    Article  Google Scholar 

  14. Osouli-Bostanabad K, Hosseinzade E, Kianvash A, Entezami A (2015) Modified nano-magnetite coated carbon fibers magnetic and microwave properties. Appl Surf Sci 356:1086–1095

    Article  Google Scholar 

  15. Huang Yunxia, Wang Yan, Li Zhimin, Yang Zi, Shen Chunhao, He Chuangchuang (2014) Effect of Pore Morphology on the Dielectric Properties of Porous Carbons for Microwave Absorption Applications. J Phys Chem C 118(45):26027–26032

    Article  Google Scholar 

  16. Wang Guizhen, Gao Zhe, Tang Shiwei, Chen Chaoqiu, Duan Feifei, Zhao Shichao, Lin Shiwei, Feng Yuhong, Zhou Lei, Qin Yong (2012) Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12):11009–11017

    Article  Google Scholar 

  17. Yang H, Ye T, Lin Y, Liu M (2015) Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite. Appl Surf Sci 357:1289–1293

    Article  Google Scholar 

  18. Wang A, Wang W, Long C, Li W, Guan J, Gu H, Xu G (2014) Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J Mater Chem C 2:3769–3776

    Article  Google Scholar 

  19. Huang X, Zhang J, Xiao S, Chen G (2014) The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J Am Ceram Soc 97:1363–1366

    Article  Google Scholar 

  20. Song W-L, Cao M-S, Lu M-M, Liu J, Yuan J, Fan L-Z (2013) Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. J Mater Chem C 1:1846–1854

    Article  Google Scholar 

  21. Mu Y, Zhou W, Hu Y, Qing Y, Luo F, Zhu D (2015) Improvement of mechanical and dielectric properties of PIP-SiCf/SiC composites by using Ti3SiC2 as inert filler. Ceram Int 41:4199–4206

    Article  Google Scholar 

  22. Li Z, Wei X, Luo F, Zhou W, Hao Y (2014) Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction. Ceram Int 40:2545–2549

    Article  Google Scholar 

  23. Li Z, Luo F, He C, Yang Z, Li P, Hao Y (2015) Improving the microwave dielectric properties of Ti3SiC2 powders by Al doping. J Alloys Compd 618:508

    Article  Google Scholar 

  24. Low I, Wren E, Prince K, Atanacio A (2007) Characterization of phase relations and properties in air-oxidised Ti3SiC2. Mater Sci Eng, A 466:140–147

    Article  Google Scholar 

  25. Barsoum MW, El-Raghy T (1996) Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc 79:1953–1956

    Article  Google Scholar 

  26. Sun Z, Zhou Y, Li M (2001) Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300 C in air. Corros Sci 43:1095–1109

    Article  Google Scholar 

  27. Li S, Song G-M, Zhou Y (2012) A dense and fine-grained SiC/Ti3Si(Al)C2 composite and its high-temperature oxidation behavior. J Eur Ceram Soc 32:3435–3444

    Article  Google Scholar 

  28. Liu Y, Luo F, Su J, Zhou W, Zhu D (2015) Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. J Alloys Compd 632:623–628

    Article  Google Scholar 

  29. Su J, Zhou W, Liu Y, Qing Y, Luo F, Zhu D (2015) Effect of Ti3SiC2 addition on microwave absorption property of Ti3SiC2/cordierite coatings. Surf Coat Technol 270:39–46

    Article  Google Scholar 

  30. Barsoum M, El-Raghy T, Rawn C, Porter W, Wang H, Payzant E, Hubbard C (1999) Thermal properties of Ti3SiC2. J Phys Chem Solids 60:429–439

    Article  Google Scholar 

  31. Smeacetto F, Salvo M, Bytner FDH, Leone P, Ferraris M (2010) New glass and glass–ceramic sealants for planar solid oxide fuel cells. J Eur Ceram Soc 30:933–940

    Article  Google Scholar 

  32. Holand W, Beall GH (2012) Glass ceramic technology. Wiley, Hoboken

    Book  Google Scholar 

  33. Davis JR (2004) Handbook of thermal spray technology. ASM international, Materials park

    Google Scholar 

  34. Gan JA, Berndt CC (2015) Nanocomposite coatings: thermal spray processing, microstructure and performance. Int Mater Rev 60:195–244

    Article  Google Scholar 

  35. Wen Q, Zhou W, Su J, Qing Y, Luo F, Zhu D (2015) Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings. J Mater Sci: Mater Electron 27:1783–1790

    Google Scholar 

  36. Heimann RB (2008) Plasma-spray coating: principles and applications. Wiley, Hoboken

    Google Scholar 

  37. Zhang J, He YM, Sun Y, Liu CF (2010) Microstructure evolution of Si3N4/Si3N4 joint brazed with Ag–Cu–Ti + SiCp composite filler. Ceram Int 36:1397–1404

    Article  Google Scholar 

  38. Choi Y, Rhee S-W (1994) Equilibrium in the reaction of Ti and C to form substoichiometric TiCx. J Mater Sci Lett 13:323–325

    Article  Google Scholar 

  39. Khoptiar Y, Gotman I (2003) Synthesis of dense Ti3SiC2-based ceramics by thermal explosion under pressure. J Eur Ceram Soc 23:47–53

    Article  Google Scholar 

  40. Sun Z, Zhou Y, Li M (2001) High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater 49:4347–4353

    Article  Google Scholar 

  41. Kao KC (2004) Dielectric phenomena in solids. Academic press, Cambridge

    Google Scholar 

  42. Qing Y, Wen Q, Luo F, Zhou W, Zhu D (2016) Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J Mater Chem C 4:371–375

    Article  Google Scholar 

  43. Regalado CM (2004) A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker’s mixing formulae. Geoderma 123:41–50

    Article  Google Scholar 

  44. Wang B, Guo Z, Han Y, Zhang T (2013) Electromagnetic Wave Absorbing Properties of Multi-walled Carbon Nanotube/Cement Composites. Constr Build Mater 46:98–103

    Article  Google Scholar 

  45. Wang H, Zhu D, Zhou W, Luo F (2015) Temperature dependence of the electromagnetic and microwave absorption properties of polyimide/Ti3SiC2 composites in the X band. RSC Adv 5:86656–86664

    Article  Google Scholar 

  46. Qing Y, Zhou W, Luo F, Zhu D (2012) Effect of magnetic fillers on the electromagnetic properties of CaCu3Ti4O12–epoxy composites within the 2–18 GHz range. J Mater Chem C 1:536–541

    Article  Google Scholar 

  47. Tian L, Yan X, Xu J, Wallenmeyer P, Murowchick J, Liu L, Chen X (2015) Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 3:12550–12556

    Article  Google Scholar 

  48. Sudeep P, Vinayasree S, Mohanan P, Ajayan P, Narayanan T, Anantharaman M (2015) Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl Phys Lett 106:221603

    Article  Google Scholar 

  49. Ansari A, Akhtar MJ (2016) Investigation on electromagnetic characteristics, microwave absorption, thermal and mechanical properties of ferromagnetic cobalt–polystyrene composites in the X-band (8.4–12.4 GHz). RSC Adv 6:13846–13857

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51402239), the State Key Laboratory of Solidification Processing (NWPU), China (Grant Nos. KP201422 and KP201604), and the Fundamental Research Funds for the Central Universities (No. 3102014JCY01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinlong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Q., Zhou, W., Wang, Y. et al. Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings. J Mater Sci 52, 832–842 (2017). https://doi.org/10.1007/s10853-016-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0379-5

Keywords

Navigation