Skip to main content
Log in

Constructing a Conductive Nest to Improve the Electrochemical Properties of SiOC Anodes Through CNT Additives

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SiOC anode materials are widely studied due to their good stability, high theoretical specific capacity, and low cost, which make them attractive as potential anode materials. However, the poor conductivity of SiOC limits its application in lithium-ion batteries. In order to improve the electrochemical properties of SiOC materials, SiOC/carbon nanotube (CNT) nanocomposites with different content were prepared by the wet chemical method. The effects of CNTs on the microstructure and electrochemical performance of the nanocomposites were studied. When the current density was 0.2 C, the reversible capacity of SiOC/CNTs-3 composites reached 517.01 mAh/g after 100 cycles, while that of SiOC was only 413.52 mAh/g. The results show that the introduction of CNTs improved the electrochemical properties of SiOC materials. Therefore, the study provides an effective strategy for improving the electrochemical properties of silicon-based anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Baquié and J. Urpelainen, Access to modern fuels and satisfaction with cooking arrangements: survey evidence from rural India. Energy Sustain. Dev. 38, 34 (2017).

    Article  Google Scholar 

  2. L. Zhang, C. Zhu, S. Yu, D. Ge, and H. Zhou, Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 66, 269 (2022).

    Article  Google Scholar 

  3. C. Du, Z. Zhao, H. Liu, F. Song, L. Chen, Y. Cheng, and Z. Guo, The status of representative anode materials for lithium-ion batteries. Chem. Rec. 23(5), e202300004 (2023).

    Article  CAS  Google Scholar 

  4. Z. Wu, X. Cheng, D. Tian, T. Gao, W. He, and C. Yang, SiOC nanolayers directly-embedded in graphite as stable anode for high-rate lithium ion batteries. Chem. Eng. J. 375, 121997 (2019).

    Article  CAS  Google Scholar 

  5. V.S. Pradeep, M. Graczyk-Zajac, R. Riedel, and G.D. Soraru, New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochim. Acta 119, 78 (2014).

    Article  CAS  Google Scholar 

  6. M. Halim, G. Liu, R.E.A. Ardhi, C. Hudaya, O. Wijaya, S.H. Lee, A.Y. Kim, and J.K. Lee, Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors. ACS Appl. Mater. Interfaces 9(24), 20566 (2017).

    Article  CAS  Google Scholar 

  7. H. Li, X. Yan, Z. Ma, Y. Zhang, C. Li, W. Xiao, and Y. Jiang, Silicon oxycarbide-carbon hybrid nanofibers: a promising anode for ultralong-cycle lithium ion batteries with high rate capability. Ceram. Int. 47(5), 6867 (2021).

    Article  CAS  Google Scholar 

  8. K. Xia, Z. Wu, C. Xuan, W. Xiao, J. Wang, and D. Wang, Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries. Electrochim. Acta 245, 287 (2017).

    Article  CAS  Google Scholar 

  9. J.-P. Han, B. Zhang, X. Bai, L.-Y. Wang, Y.-X. Qi, N. Lun, and Y.-J. Bai, Li4 Ti5O12 composited with Li2ZrO3 revealing simultaneously meliorated ionic and electronic conductivities as high performance anode materials for Li-ion batteries. J. Power Sour. 354, 16 (2017).

    Article  CAS  Google Scholar 

  10. Y. Qiao, X. Hu, Y. Liu, and Y. Huang, Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochim. Acta 63, 118 (2012).

    Article  CAS  Google Scholar 

  11. P.P. Wang, Y.X. Zhang, X.Y. Fan, J.X. Zhong, and K. Huang, Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material. J. Power Sour. 379, 20 (2018).

    Article  CAS  Google Scholar 

  12. Z.P. Ma, J.P. Zhu, F.H. Zeng, Z.Q. Yang, Y. Ding, and W.H. Tang, Structural control and optimization schemes of silicon-based anode materials. Energy Technol. 11(6), 2201496 (2023).

    Article  CAS  Google Scholar 

  13. Y. Peng, K. Wang, M. Yu, A. Li, and R.K. Bordia, An optimized process for in situ formation of multi-walled carbon nanotubes in templated pores of polymer-derived silicon oxycarbide. Ceram. Int. 43(4), 3854 (2017).

    Article  CAS  Google Scholar 

  14. Y. Ren, B. Yang, X. Huang, F. Chu, J. Qiu, and J. Ding, Intercalated SiOC/graphene composites as anode material for li-ion batteries. Solid State Ion. 278, 198 (2015).

    Article  CAS  Google Scholar 

  15. V.L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, O. Nalamasu, A.M. Pulickel, and J. Suhr, Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block. Appl. Phys. Lett. 91(15), 153116 (2007).

    Article  Google Scholar 

  16. P.L.R. Alcántara, G.F. Ortiz, J.L. Tirado, E. Zhecheva, and R. Stoyanova, Lithium Insertion into modified conducting domains of graphitized carbon nanotubes. J. Electrochem. Soc. 154(10), A964 (2007).

    Article  Google Scholar 

  17. S. Ahn, M. Jeong, T. Yokoshima, H. Nara, T. Momma, and T. Osaka, Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si-O-C composite anode for lithium secondary batteries. J. Power Sour. 336, 203 (2016).

    Article  CAS  Google Scholar 

  18. H.-B. Du, Y.-L. Li, F.-Q. Zhou, D. Su, and F. Hou, One-step fabrication of ceramic and carbon nanotube (CNT) composites by in situ growth of CNTs. J. Am. Ceram. Soc. 93(5), 1290 (2010).

    Article  CAS  Google Scholar 

  19. R. Bhandavat, M. Cologna, and G. Singh, Polymer-derived SiOC–CNT paper as lithium-ion battery anodes. Nanomater. Energy. 1(1), 57 (2012).

    Article  CAS  Google Scholar 

  20. R. Bhandavat and G. Singh, Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide–carbon nanotube shell/core composites. J. Phys. Chem. C 117(23), 11899 (2013).

    Article  CAS  Google Scholar 

  21. Y. Li, Y. Hu, Y. Lu, S. Zhang, G. Xu, K. Fu, S. Li, C. Chen, L. Zhou, X. Xia, and X. Zhang, One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. J. Power Sour. 254, 33 (2014).

    Article  CAS  Google Scholar 

  22. L. David, R. Bhandavat, U. Barrera, and G. Singh, Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat. Commun. 7(1), 10998 (2016).

    Article  CAS  Google Scholar 

  23. S. Ahn, H. Nara, T. Momma, and T. Osaka, Fabrication of powdered Si-O-C composite by electrodeposition harvesting method as a long-cycle-life anode material for lithium-ion batteries. Mater. Lett. 251, 184 (2019).

    Article  CAS  Google Scholar 

  24. Z. Sang, X. Yan, L. Wen, D. Su, Z. Zhao, Y. Liu, H. Ji, J. Liang, and S.X. Dou, A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage. Energy Storage Mater. 25, 876 (2020).

    Article  Google Scholar 

  25. S.E. Wang, J.-S. Park, M.J. Kim, Y.C. Kang, and D.S. Jung, One-pot spray pyrolysis for core–shell structured Sn@SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries. Appl. Surf. Sci. 589, 152952 (2022).

    Article  Google Scholar 

  26. N.A. Banek, D.T. Abele, K.R. McKenzie, and M.J. Wagner, Sustainable conversion of lignocellulose to high-purity, highly crystalline flake potato graphite. ACS Sustain. Chem. Eng. 6(10), 13199 (2018).

    Article  CAS  Google Scholar 

  27. T.S.D. Kumari, D. Jeyakumar, and T.P. Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon. RSC Adv. 3(35), 15028 (2013).

    Article  Google Scholar 

  28. J. Zhang, G. Yang, J.-A. Wang, Z.-L. Hou, X. Zhang, and C. Li, Graphene and carbon nanotube dual-decorated SiOx composite anode material for lithium-ion batteries. Energy Fuels 35(23), 19784 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52202113, 52272089), Postdoctoral Science Foundation of China (No. 2021M702550), Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JY042), Key Research and Development Programs of Shaanxi (No. 2020SF-426, 2021GY-295), Natural Science Basic Research Program of Shaanxi for Distinguished Young Youths (No. 2021JC-43), and Lifting Program for Young Talents of Shaanxi Science and Technology Association (No. 20220422). We would like to thank Dr. Xue Song at the Instrumental Analysis Center of Xi’an University of Architecture and Technology for their assistance with measurement and discussion of SEM, Raman, and other analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmo Shi.

Ethics declarations

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Chen, H., Zhang, J. et al. Constructing a Conductive Nest to Improve the Electrochemical Properties of SiOC Anodes Through CNT Additives. J. Electron. Mater. 53, 1074–1082 (2024). https://doi.org/10.1007/s11664-023-10828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10828-6

Keywords

Navigation