Skip to main content
Log in

Effects of Er3+ and Pr3+ Substitution on Structural, Dielectric, Ferroelectric and Photoluminescence Properties of the BaTi0.9Zr0.1O3 Ceramic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BaTi0.9Zr0.1O3 (BZT), Ba1−x Ln2x/3 x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Er3+) (BZT-Er) and Ba1−x Ln2x/3 x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Pr3+) (BZT-Pr) were prepared via the conventional solid-state reaction method. X-ray diffraction showed that all these ceramics were in the single perovskite phase at room temperature (RT). The temperature dependence of dielectric behavior was investigated in the temperature range 25–225°C and exhibited a classical ferroelectric behavior. A slight decrease of the Curie temperature (T C) with Pr3+ and Er3+ substitution was observed in addition to an increase in the maximum dielectric permittivity (\( \varepsilon_{r\,\rm{max} }^{{\prime }} \)) of about 40% for the BZT-Er. At RT, the ferroelectric and piezoelectric coefficients were decreased for BZT-Pr, but were maintained for BZT-Er with a piezoelectric coefficient (d 33) of 185 pC/N, a planar electromechanical coupling factor of 30%, and a remanent polarization of 11.6 μC/cm2. The Raman bands as a function of temperature confirmed the paraelectric-ferroelectric phase transition of all those ceramics. The photoluminescence spectra showed that strong red (615 nm and 645 nm) and bright green (523 nm and 545 nm) emission bands were obtained, under excitation by laser at 488 nm at RT, for BZT-Pr and BZT-Er, respectively. These multifunctional materials showed a significant technological promise in coupling device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Benabdallah, A. Simon, H. Khemakhem, C. Elissalde, and M. Maglione, J. Appl. Phys. 109, 124116 (2011).

    Article  Google Scholar 

  2. J. Ravez and A. Simon, Eur. Phys. J. Appl. Phys. 11, 9 (2000).

    Article  Google Scholar 

  3. Y. Zhi, A. Chen, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 1489 (2002).

    Article  Google Scholar 

  4. C.M. Wu, T.B. Wu, and M.L. Chen, Appl. Phys. Lett. 69, 2659 (1996).

    Article  Google Scholar 

  5. X.G. Tang, J. Wang, X.X. Wang, and H.L.W. Chan, Solid State Commun. 131, 163 (2004).

    Article  Google Scholar 

  6. J. Qi, Z. Gui, Y. Wang, Q. Li, T. Li, and L. Li, J. Mater. Sci. Lett. 21, 405 (2002).

    Article  Google Scholar 

  7. H. Chen, C. Yang, C. Fu, J. Shi, J. Zhang, and W. Leng, J. Mater. Sci.: Mater. Electron. 19, 379 (2008).

    Article  Google Scholar 

  8. S.B. Reddy, K. Prasad Rao, and M.S. Ramachandra Rao, Scripta Mater. 57, 591 (2007).

    Article  Google Scholar 

  9. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, Scripta Mater. 6, 68 (2009).

    Article  Google Scholar 

  10. X. Chou, J. Zhai, H. Jiang, and X. Yao, J. Appl. Phys. 102, 084106 (2007).

    Article  Google Scholar 

  11. Q. Zhang, H. Sun, X. Wang, Y. Zhang, and X. Li, J. Eur. Ceram. Soc. 34, 1439 (2014).

    Article  Google Scholar 

  12. W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, J. Alloys Compd. 583, 305 (2014).

    Article  Google Scholar 

  13. A. Kerfah, K. Taibi, A. Guehria-Laidoudi, A. Simon, and J. Ravez, Solid State Sci. 8, 613 (2006).

    Article  Google Scholar 

  14. L. Guo, C. Zhong, X. Wang, and L. Li, J. Alloys Compd. 530, 22 (2012).

    Article  Google Scholar 

  15. P. Du, L. Luo, W. Li, Y. Zhang, and H. Chen, Mater. Sci. Eng., B 178, 1219 (2013).

    Article  Google Scholar 

  16. P. Du, L. Luo, W. Li, Y. Zhang, and H. Chen, J. Alloys Compd. 551, 219 (2013).

    Article  Google Scholar 

  17. P. Du, L. Luo, W. Li, Y. Zhang, and H. Chen, J. Alloys Compd. 559, 92 (2013).

    Article  Google Scholar 

  18. Y. Zhao, X. Yuan, Y. Zhao, H. Zhou, J. Li, and HB. Jin, Mater. Lett. 162, 226 (2016).

  19. C. Ostos, L. Mestres, M.L. Martinez-Sarrion, J.E. Garcia, A. Albareda, and R. Perez, Solid State Sci. 11, 1016 (2009).

    Article  Google Scholar 

  20. J. Quan Qi, B. Bo Liu, H. Yong Tian, H. Zou, Z. Xing Yue, and L. Tu Li, Solid State Sci. 14, 1520 (2012).

  21. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, and I.W. Kim, J. Alloys Compd. 579, 473 (2013).

    Article  Google Scholar 

  22. B.K. Lee, S.Y. Chung, and S.J.L. Kang, J. Am. Ceram. Soc. 83, 2858 (2000).

    Article  Google Scholar 

  23. Y. Kaneko, F. Azough, T. Kida, K. Ito, T. Shimada, T. Minemura, B. Schaffer, and R. Freer, J. Am. Ceram. Soc. 95, 3928 (2012).

    Article  Google Scholar 

  24. J. Rodriguez-Carvajal, Program Fullprof, Laboratoire Léon Brillouin, (CEA-CNRS), Version May 2009, LLB-JRC, (2010).

  25. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  26. S. Mahboob, A.B. Dutta, C. Prakash, G. Swaminathan, S.V. Suryanarayana, G. Prasad, and G.S. Kumar, Mater. Sci. Eng., B 134, 36 (2006).

    Article  Google Scholar 

  27. M. Zannen, M. Dietze, H. Khemakhem, A. Kabadou, and M. ES-Souni, Ceram. Int. B 40, 13461 (2014).

  28. V.S. Puli, D.K. Pradhan, W. Pérez, and R.S. Katiyar, J. Phys. Chem. Solids 74, 466 (2013).

    Article  Google Scholar 

  29. J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M. Siu Li, and E. Longo, Solid State Sci. 12, 1160 (2010).

    Article  Google Scholar 

  30. Y.J. Jiang, L.Z. Zeng, R.P. Wang, Y. Zhu, and L. Lia, J. Raman Spectrosc. 27, 31 (1996).

    Article  Google Scholar 

  31. B. Wang and L. Zhang, Phys. Status Solidi A 169, 57 (1998).

    Article  Google Scholar 

  32. Y. Zhi, A. Chen, P. M. Vilarinho, P. Q. Mantas, and J. L. Baptista, J. Eur. Ceram. Soc. 18, 1613 (1998).

  33. X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, and R. Perez, Mater. Chem. Phys. 125, 493 (2011).

    Article  Google Scholar 

  34. Y. Chen, X. Dong, R. Liang, J. Li, and Y. Wang, J. Appl. Phys. 98, 064107 (2005).

    Article  Google Scholar 

  35. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 539 (1982).

    Article  Google Scholar 

  36. F. Moura, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longo, and J.A. Varela, J. Alloys Compd. 462, 129 (2008).

    Article  Google Scholar 

  37. M.J. Haun, E. Furman, Z.Q. Zhuang, S.J. Jang, and L.E. Cross, Ferroelectrics 14, 313 (1989).

    Article  Google Scholar 

  38. S.Q. Man, H.L. Zhang, Y.L. Liu, J.X. Meng, E.Y.B. Pun, and P.S. Chung, Opt. Mater. 30, 334 (2007).

    Article  Google Scholar 

  39. S. Kuo, C. Chen, T. Tseng, S. Chang, and W. Hsieh, J. Appl. Phys. 92, 1868 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zouari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouari, I., Sassi, Z., Seveyrat, L. et al. Effects of Er3+ and Pr3+ Substitution on Structural, Dielectric, Ferroelectric and Photoluminescence Properties of the BaTi0.9Zr0.1O3 Ceramic. J. Electron. Mater. 46, 4662–4669 (2017). https://doi.org/10.1007/s11664-017-5451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5451-7

Keywords

Navigation