Skip to main content
Log in

Revealing the Formation Mechanism and Effect of Pressure on the Magnetic Order of Multiferroic BiMn2O5 Through Neutron Powder Diffraction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The crystal and magnetic structures of the strong magnetoelectric BiMn2O5 have been studied as a function of pressure up to 5.7 GPa in the temperature range from 10 K to 60 K by means of neutron powder diffraction. The results reveal that the Pbam orthorhombic crystal structure remains unchanged in the investigated thermodynamic range. At ambient pressure, a long-range commensurate antiferromagnetic (AFM) phase with propagation vector q = (1/2, 0, 1/2) formed below T N = 41(2) K, accompanied by anomalies in the temperature dependence of structural parameters including the lattice parameters, interatomic distances, and bond angles. This AFM phase remained stable␣in the studied pressure range, and the relevant pressure coefficient of the Néel temperature was determined to be 3.0(4) K/GPa. No incommensurate AFM phase was detected. The magnetic properties of BiMn2O5 and their difference from most other RMn2O5 compounds were analyzed in terms of competing exchange interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442759, 759 (2006).

    Article  Google Scholar 

  3. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.W. Cheong, Nature 429, 392 (2004).

    Article  Google Scholar 

  4. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).

    Article  Google Scholar 

  5. N. Iwata and K. Kohn, Ferroelectrics 219, 161 (1998).

    Article  Google Scholar 

  6. Y. Koyata, H. Nakamura, N. Iwata, A. Inomata, and K. Kohn, J. Phys. Soc. Jpn. 65, 1383 (1996).

    Article  Google Scholar 

  7. Y. Koyata and K. Kohn, Ferroelectrics 204, 115 (1997).

    Article  Google Scholar 

  8. N. Iwata and M. Uga, Ferroelectrics 204, 97 (1997).

    Article  Google Scholar 

  9. M. Uga, N. Iwata, and K. Kohn, Ferroelectrics 219, 55 (1998).

    Article  Google Scholar 

  10. N. Hur, S. Park, P.A. Sharma, S. Guha, and S.W. Cheong, Phys. Rev. Lett. 93, 107207 (2004).

    Article  Google Scholar 

  11. P.G. Radaelli, L.C. Chapon, A. Daoud-Aladine, C. Vecchini, P.J. Brown, T. Chatterji, S. Park, and S.W. Cheong, Phys. Rev. Lett. 101, 67205 (2008).

    Article  Google Scholar 

  12. P.G. Radaelli and L.C. Chapon, J. Phys. Condens. Matter 20, 434213 (2008).

    Article  Google Scholar 

  13. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn, J. Phys. Condens. Matter 20, 434206 (2008).

    Article  Google Scholar 

  14. G.R. Blake, L.C. Chapon, P.G. Radaelli, S. Park, N. Hur, S.W. Cheong, and J. Rodríguez-Carvajal, Phys. Rev. B 71, 1 (2005).

    Article  Google Scholar 

  15. K.-W. Lee and W.E. Pickett, Phys. Rev. B 77, 115101 (2008).

    Article  Google Scholar 

  16. M. Tachibana, K. Akiyama, H. Kawaji, and T. Atake, Phys. Rev. B 72, 224425 (2005).

    Article  Google Scholar 

  17. A. Muñoz, J.A. Alonso, M.T. Casais, M.J. Martínez-Lope, J.L. Martínez, and M.T. Fernández-Díaz, Phys. Rev. B 65, 144423 (2002).

    Article  Google Scholar 

  18. L.C. Chapon, P.G. Radaelli, G.R. Blake, S. Park, and S.W. Cheong, Phys. Rev. Lett. 96, 1 (2006).

    Article  Google Scholar 

  19. R.P. Chaudhury, C.R. dela Cruz, B. Lorenz, Y. Sun, C.-W. Chu, S. Park, and S.-W. Cheong, Phys. Rev. B 77, 220104 (2008).

    Article  Google Scholar 

  20. C.R. Dela Cruz, F. Yen, B. Lorenz, M.M. Gospodinov, C.W. Chu, W. Ratcliff, J.W. Lynn, S. Park, and S.W. Cheong, Phys. Rev. B 73, 3 (2006).

    Article  Google Scholar 

  21. C.R. Dela Cruz, B. Lorenz, Y.Y. Sun, C.W. Chu, S. Park, and S.W. Cheong, Phys. Rev. B 74, 180402 (2006).

    Article  Google Scholar 

  22. D. Higashiyama, S. Miyasaka, N. Kida, T. Arima, and Y. Tokura, Phys. Rev. B 70, 1 (2004).

    Article  Google Scholar 

  23. D. Higashiyama, S. Miyasaka, and Y. Tokura, Phys. Rev. B 72, 64421 (2005).

    Article  Google Scholar 

  24. C.R. Dela Cruz, B. Lorenz, Y.Y. Sun, Y. Wang, S. Park, S.W. Cheong, M.M. Gospodinov, and C.W. Chu, Phys. Rev. B 76, 1 (2007).

    Article  Google Scholar 

  25. D.P. Kozlenko, N.T. Dang, S.E. Kichanov, E.V. Lukin, A.M. Pashayev, A.I. Mammadov, S.H. Jabarov, L.S. Dubrovinsky, H.P. Liermann, W. Morgenroth, R.Z. Mehdiyeva, V.G. Smotrakov, and B.N. Savenko, Phys. Rev. B 92, 134409 (2015).

    Article  Google Scholar 

  26. M. Deutsch, T.C. Hansen, M.T. Fernandez-Diaz, A. Forget, D. Colson, F. Porcher, and I. Mirebeau, Phys. Rev. B 92, 2 (2015).

    Article  Google Scholar 

  27. L.H. Yin, B. Yuan, J. Chen, D.M. Zhang, Q.L. Zhang, J. Yang, J.M. Dai, W.H. Song, and Y.P. Sun, Appl. Phys. Lett. 103, 1 (2013).

    Article  Google Scholar 

  28. V.V. Menshenin, J. Exp. Theor. Phys. 122, 145 (2016).

    Article  Google Scholar 

  29. V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, and V.A. Trounov, Phys. B 265, 258 (1999).

    Article  Google Scholar 

  30. V.P. Goncharenko and I.N. Glazkov, Fiz. Tekh. Vysok. Davl. 1, 56 (1991).

    Google Scholar 

  31. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  32. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993).

    Article  Google Scholar 

  33. E. Granado, M.S. Eleotério, A.F. García-Flores, J.A. Souza, E.I. Golovenchits, and V.A. Sanina, Phys. Rev. B 77, 134101 (2008).

    Article  Google Scholar 

  34. J.W. Kim, S.Y. Haam, Y.S. Oh, S. Park, S.-W. Cheong, P.A. Sharma, M. Jaime, N. Harrison, J.H. Han, G.-S. Jeon, P. Coleman, and K.H. Kim, Proc. Natl. Acad. Sci. USA 106, 15573 (2009).

    Article  Google Scholar 

  35. L.C. Chapon, G.R. Blake, M.J. Gutmann, S. Park, N. Hur, P.O. Radaelli, and S.W. Cheong, Phys. Rev. Lett. 93, 10 (2004).

    Article  Google Scholar 

  36. A. Muñoz, J.A. Alonso, M.T. Casais, M.J. Martínez-Lope, J.L. Martínez, and M.T. Fernández-Díaz, Eur. J. Inorg. Chem. 2005, 685 (2005).

    Article  Google Scholar 

  37. J.B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  Google Scholar 

  38. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).

    Article  Google Scholar 

  39. P.W. Anderson, Solid State Physics, vol. 14, ed. F. Seitz and D. Turnbull (New York: Academic, 1963), pp. 99–214.

  40. J. Alonso, M. Casais, M.J. Martínez-Lope, and I. Rasines, J. Solid State Chem. 129, 105 (1997).

    Article  Google Scholar 

  41. C. Doubrovsky, G. André, A. Gukasov, P. Auban-Senzier, C.R. Pasquier, E. Elkaim, M. Li, M. Greenblatt, F. Damay, and P. Foury-Leylekian, Phys. Rev. B 86, 1 (2012).

    Article  Google Scholar 

  42. V. Polyakov, V. Plakhty, M. Bonnet, P. Burlet, L.P. Regnault, S. Gavrilov, I. Zobkalo, and O. Smirnov, Phys. B 297, 208 (2001).

    Article  Google Scholar 

  43. C. Wilkinson, P.J. Brown, and T. Chatterji, Phys. Rev. B 84, 224422 (2011).

    Article  Google Scholar 

  44. Q. Liu, D. Sallagoity, M. Josse, and O. Toulemonde, Inorg. Chem. 52, 7853 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2014.11 and the Russian Foundation for Basic Research (RFBR) Grant No. 15-02-03248-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, N.T., Kozlenko, D.P., Kichanov, S.E. et al. Revealing the Formation Mechanism and Effect of Pressure on the Magnetic Order of Multiferroic BiMn2O5 Through Neutron Powder Diffraction. J. Electron. Mater. 46, 3373–3380 (2017). https://doi.org/10.1007/s11664-017-5351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5351-x

Keywords

Navigation