Skip to main content
Log in

Degradation in bulk heterojunction organic solar cells: changes in electrode interface and reduction in the occupation probability of the interface states

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We have investigated the degradation of P3HT:PCBM (poly(3-hexylthiophene):6,6-phenylC61 butyric acid methyl ester) solar cell beyond 150 h of fabrication in continuation to our earlier reported work up to 150 h of fabrication. The current- voltage characteristics of degraded Indium tin oxide/poly(3,4-ethylenedioxythiopene):poly(styrenesulfonate)/poly(3-hexylthiophene):6,6-phenylC61 butyric acid methyl ester/Aluminum (ITO/PEDOT:PSS/P3HT:PCBM/Al) solar cell can be explained by considering the tunneling current through electrode interfaces, increase in both the interface states density and the thickness of interface with time for150-200 h. Beyond 200 h of fabrication, a significant reduction in the occupation probability at the electrode interfaces explains the experimental results up to 300 h fairly well. Calculations based on realistic parameters and activity at both the electrode interfaces (ITO/PEDOT:PSS and P3HT:PCBM/Al) confirm that degradation at P3HT:PCBM/Al interface is more prominent than that at ITO/PEDOT:PSS interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. Cai W, Gong X, Cao Y (2010) Sol Energy Mater Sol Cells 94:114–127

    Article  CAS  Google Scholar 

  2. Song QL, Li F, Yang H, Wu HR, Wang XZ, Zhou W, Zhao JM, Ding XM, Huang CH, Hou XY (2005) Chem Phys Lett 416:42–46

    Article  CAS  Google Scholar 

  3. Liao KS, Yambem SD, Haldar A, Alley NJ, Curran SA (2010) Energies 3:1212–1250

    Article  CAS  Google Scholar 

  4. Voroshazi E, Verreet B, Buri A, Müller R, Di Nuzzo D, Heremans P (2011) Org Electron 12(5):736–744

    Article  CAS  Google Scholar 

  5. Street RA, Schoendorf M, Roy A, Lee JH (2010) Phys Rev B 81:205307–205318

    Article  Google Scholar 

  6. Monestier F, Simon JJ, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Sol Energy Mater Sol Cells 91:405–410

    Article  CAS  Google Scholar 

  7. Lacic S, Inganäs O (2005) J Appl Phys 97:124901–124907

    Article  Google Scholar 

  8. Bernède JC, Godoy A, Cattin L, Diaz FR, Morsli M, del Valle MA (2010) Solar energy, edited by Radu D Rugescu, InTech

  9. Moliton A, Nunzi JM (2006) Polym Int 55:583–600

    Article  CAS  Google Scholar 

  10. He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan GC, Cao Y (2010) J Mater Chem 20:2617–2622

    Article  CAS  Google Scholar 

  11. Kim HJ, Lee HH, Kim J-J (2009) Macromol Rapid Commun 30:1269–1273

    Article  CAS  Google Scholar 

  12. Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv Mater 11:605–625

    Article  CAS  Google Scholar 

  13. Pillai S, Green MA (2010) Sol Energy Mater Sol Cells 94:1481–1486

    Article  CAS  Google Scholar 

  14. Kang MG, Park HJ, Ahn SH, Guo LJ (2010) Sol Energy Mater Sol Cells 94:1179–1184

    Article  CAS  Google Scholar 

  15. Guerrero A, Marchesi LF, Boix PP, Ruiz-Raga S, Ripolles-Sanchis T, Garcia-Belmonte G, Bisquert J (2012) ACSNANO 6:3453–3460

    CAS  Google Scholar 

  16. Toyoshima S, Kuwabara K, Sakurai T, Taima T, Saito K, Kato H, Akimoto K (2007) Jpn J Appl Phys 46:2692–2695

    Article  CAS  Google Scholar 

  17. Jorgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686–714

    Article  Google Scholar 

  18. Nguyen LH, Hoppe H, Erb T, Gunes S, Gobsch G, Sariciftci NS (2007) Adv Funct Mater 17:1071–1078

    Article  CAS  Google Scholar 

  19. Chawdhury N, Kohler A, Harrison MG, Hwang DH, Holmes AB, Friend RH (1999) Synth Met 102:871–872

    Article  CAS  Google Scholar 

  20. Arora S, Singh V, Arora M, Tandon RP (2011) Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell. Physica B. doi:10.1016/j.physb.2011.08.086

  21. Vázquez H, Flores F, Kahn A (2005) IPAP Conf. Series, Proc. Int. Symp. Super-Functionality Organic Devices 6:1–5

  22. Schafferhans J, Baumann A, Deibel C, Dyakonov V (2008) Appl Phys Lett 93:093303

    Article  Google Scholar 

  23. Kumar P, Jain SC, Kumar V, Chand S, Tandon RP (2009) J Phys D: Appl Phys 42:055102–055108

    Article  Google Scholar 

  24. Biswas S, Mansingh A (1992) J Phys D: Appl Phys 25:100–105

    Article  CAS  Google Scholar 

  25. Dennler G, Scharber MC, Brabec CJ (2009) Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  26. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y (2005) Adv Funct Mater 15:203–208

    Article  CAS  Google Scholar 

  27. Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V (2010) Org Electron 11:1693–1700

    Article  CAS  Google Scholar 

  28. Goswami A, Goswami AP (1977) Pramana 8:335–347

    Article  CAS  Google Scholar 

  29. Kolodzey J, Chowdhury EA, Adam TN, Qui G, Rau I, Olowolafe JO, Suehle JS, Chen Y (2000) IEEE T Electron Dev 47:121–128

    Article  CAS  Google Scholar 

  30. Lin YJ (2008) J Appl Phys 103:063702–063705

    Article  Google Scholar 

Download references

Acknowledgement

Authors wish to thank Department of Science and Technology Purse Grant, INDIA for financial support. We want to further thank Prof P.C. Mathur, Department of Electronic Science, South Campus, University of Delhi, Dr. M. Aslam Parvaiz, Principal, Zakir Husain College, University of Delhi and Dr. Pankaj Kumar, Scientist B, National Physical Laboratory for their valuable suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Arora, S., Bhatnagar, P.K. et al. Degradation in bulk heterojunction organic solar cells: changes in electrode interface and reduction in the occupation probability of the interface states. J Polym Res 19, 9899 (2012). https://doi.org/10.1007/s10965-012-9899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9899-0

Keywords

Navigation