Skip to main content
Log in

Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Manipulation of onion-like carbon (OLC), also known as carbon nano-onions (CNOs), at the level of various arrays of microelectrodes is vital in practical applications such as biological and chemical sensing, ultracapacitors (supercapacitors), electromagnetic shielding, catalysis, tribology, optical limiting and molecular junctions in scanning tunneling microscopy, and field-effect transistors. In spite of technological developments in this area, rigorous handling of carbon nano-onions towards desired locations within a device remains a challenge, and the quantity of OLC required significantly influences the price of the final electrical or electronic device. We present herein an experimental study on electromanipulation and trapping of onion-like carbon (OLC) at the level of gold-patterned interdigitated microelectrodes through dielectrophoresis. The influence of the magnitude as well as frequency of the alternating-current (AC) voltage employed for OLC trapping is discussed in detail. The effects of tuning the AC field strength and frequency on the OLC trapping behavior are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Xu, H. Jia, H. Zhou, H. Ichinose, and C. Iwamoto, MRS Proc. 675, W7.5.1 (2001). doi:10.1557/PROC-675-W7.5.1.

  2. J.K. McDonough and Y. Gogotsi, Electrochem. Soc. Interface 22, 61 (2013). doi:10.1149/2.F05133if.

  3. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, and P. Simon, Nat. Nanotechnol. 5:651 (2010). doi:10.1038/NNANO.2010.162

  4. Y.G. Gogotsi and I.V. Uvarova, Nanostruct. Mater. Coatings Biomed. Sensor Appl. (2003). doi:10.1007/978-94-010- 0157-1

  5. Y. Wang, G. Xing, Z. Jun Han, Y. Shi, J.I. Wong, Z.X. Huang, K. Ostrikovcde, and H.Y. Yang, Nanoscale 6, 8884 (2014). doi:10.1039/C4NR01553C.

    Article  Google Scholar 

  6. J. Breczko, M.E. Plonska-Brzezinska, and L. Echegoyen, Electrochim. Acta 72, 61 (2012). doi:10.1016/j.electacta.2012.03.177.

    Article  Google Scholar 

  7. O. Shenderova, V. Grishkoa, G. Cunninghama, S. Moseenkovb, G. McGuirea, and V. Kuznetsovb, Diamond Relat. Mater. 17, 462 (2008). doi:10.1016/j.diamond.2007.08.023

  8. J. Bartelmess and S. Giordani, Beilstein J. Nanotechnol. 5, 1980 (2014). doi:10.3762/bjnano.5.207.

    Article  Google Scholar 

  9. W. Zhang, M. Yao, X. Fan, S. Zhao, S. Chen, C. Gong, Y. Yuan, R. Liu, and B. Liu, J. Chem. Phys. 142, 034702 (2015). doi:10.1063/1.4905841.

    Article  Google Scholar 

  10. A.I. Romanenko, O.B. Anikeeva, V.L. Kuznetsov, T.I. Buryakov, E.N. Tkachev, S.I. Moseenkov, and A.N. Usoltseva, J. Optoelectron. Adv. Mater. 10, 1749 (2008).

    Google Scholar 

  11. J. Macutkevič, J. Banys, K. Glemža, V. Kuznetsov, V. Borjanovic, O. Shenderova, Lith. J. Phys. 53, 238 (2013). doi:10.3952/physics.v53i4.2766.

  12. K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys. D Appl. Phys. 31, L34 (1998).

    Article  Google Scholar 

  13. X.Q. Chen, T. Saito, H. Yamada, and K. Matsushige, Appl. Phys. Lett. 78, 4 (2001).

    Article  Google Scholar 

  14. J. Suehiro, N. Sanob, G. Zhoua, H. Imakiirea, K. Imasakaa, and M. Haraa, Appl. Dielectroph. Fabric. Carbon Nanohorn Gas Sensor. (2005). doi:10.1016/j.elstat.2005.11.001.

  15. B.C. Gierhart, D.G. Howitt, S.J. Chen, R.L. Smith, and S.D. Collins, Langmuir 23, 12450 (2007). doi:10.1021/la701472y.

    Article  Google Scholar 

  16. J. Suehiro, R. Yatsunami, R. Hamada, and M. Hara, J. Phys. D Appl. Phys. 32, 2814 (1999).

    Article  Google Scholar 

  17. J. Suehiro, R. Hamada, D. Noutomi, M. Shutouand, and M. Hara, J. Electrostat. 57, 157 (2003).

    Article  Google Scholar 

  18. J. Suehiro, M. Shutou, T. Hatanoand, and M. Hara, Sensors Actuators B Chem. 96, 144 (2003).

    Article  Google Scholar 

  19. P.J. Costanzo, E. Liang, T.E. Patten, S.D. Collins, and R.L. Smith, Lab Chip 5, 606 (2005).

    Article  Google Scholar 

  20. M.E. Plonska-Brzezinska, A. Lapinskib, Z.A. Wilczewskaa, A.T. Dubisa, A. Villalta-Cerdasc, K. Winklera, and L. Echegoyen, Carbon 49, 5079 (2011). doi:10.1016/j.carbon.2011.07.027.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Executive Agency for Higher Education, Research, Development, and Innovation (UEFISCDI) through the National Plan for Research, Development, and Innovation 2007–2013—Joint Applied Research Projects, 2013 Competition, Contract No. 43/2014 (PN-II-PT-PCCA-2013-4), funded under the Joint Applied Research Projects—Parteneriate 2013, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Olariu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olariu, M., Arcire, A. & Plonska-Brzezinska, M.E. Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis. J. Electron. Mater. 46, 443–450 (2017). https://doi.org/10.1007/s11664-016-4870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4870-1

Keywords

Navigation