Skip to main content
Log in

Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Three kinds of hybrid aluminum (Al) particles with binary particle size distribution, i.e., [2 μm/50 μm], [2 μm/18 μm] and [18 μm/50 μm], were added in epoxy (EP) to prepare hybrid Al/EP composites with enhanced dielectric properties and thermal conductivity for embedded capacitor applications. The dielectric permittivity, dissipation factor, and thermal conductivity of three types of hybrid Al/EP composites were investigated as a function of relative volume fraction of smaller-size Al of hybrid Al particles (V s) at a total filler content of 60 wt.%, respectively. The results indicate that dielectric permittivity and thermal conductivity of the hybrid Al/EP mainly depend on two factors, such as the type of hybrid filler and the V s. The maximum dielectric permittivity of 48 appears at V s = V 18μm/V (18μm+50μm) = 35%. While, the above two factors have a negligible influence on the dissipation factor, which is as low as 0.022. The highest thermal conductivity of 1.28 W/m K is obtained at V s = V 18μm/V (18μm+50μm) = 50%. The maximum thermal conductivity for three hybrid systems shifts towards lower V s with decreasing the size ratio of a larger Al to a smaller one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Popielarz and C.K. Chiang, Mater. Sci. Eng. 139, 48 (2007).

    Article  Google Scholar 

  2. Z.M. Dang, Y.F. Yu, and H.P. Xu, Compos. Sci. Technol. 68, 171 (2008).

    Article  Google Scholar 

  3. Y. Kobayashi, T. Tanase, and T. Tabata, J. Eur. Ceram. Soc. 28, 117 (2008).

    Article  Google Scholar 

  4. J.W. Xu and C.P. Wong, Compos. A 38, 13 (2007).

    Article  Google Scholar 

  5. S.S. Vaisakh, M. Hassanzadeh, and R. Metz, Polym. Adv. Technol. 25, 240 (2014).

    Article  Google Scholar 

  6. Q. Zhang and S.H. Qi, J. Elastom. Plast. 47, 431 (2015).

    Article  Google Scholar 

  7. C.L. Poh, M. Mariatti, and M.N. Ahmad, Fauzi. J. Mater. Sci. 25, 2111 (2014).

    Google Scholar 

  8. Z.J. Wang, W.Y. Zhou, and X.Z. Sui, J. Reinf. Plast. Compos. 34, 1126 (2015).

    Article  Google Scholar 

  9. W.Y. Zhou D.M. Yu and C.F. Wang, Soc. Am. Mater. Process. Exhib. Long Beach 52, 18 (2008).

    Google Scholar 

  10. J.W. Bae, W. Kim, and S.H. Cho, J. Mater. Sci. 35, 5907 (2000).

    Article  Google Scholar 

  11. W.Y. Zhou, Thermochim. Acta 512, 183 (2011).

    Article  Google Scholar 

  12. W.Y. Zhou, S.H. Qi, and C.C. Tu, J. Appl. Polym. Sci. 140, 1312 (2007).

    Article  Google Scholar 

  13. J.P. Hong, S.W. Yoon, and T. Hwang, Thermochim. Acta 537, 70 (2012).

    Article  Google Scholar 

  14. W. Song, C.Q. Li, and L. Lin, Phys. Procedia 50, 405 (2013).

    Article  Google Scholar 

  15. L.S. Wang, X.Y. Piao, and H. Zou, Appl. Phys. A 118, 243 (2015).

    Article  Google Scholar 

  16. W.Y. Zhou, Q.G. Chen, and X.Z. Sui, Compos. A 71, 184 (2015).

    Article  Google Scholar 

  17. Y.C. Zhou, H. Wang, and F. Xiang, Appl. Phys. Lett. 98, 182906 (2011).

    Article  Google Scholar 

  18. W.Y. Zhou and D.M. Yu, J. Mater. Sci. 48, 7960 (2013).

    Article  Google Scholar 

  19. W.Y. Zhou and J. Zuo, Polym. Mater. Sci. Eng. Sin. 27, 76 (2011).

    Google Scholar 

  20. H.R. Li, M. Jiang, and L.J. Dong, J. Macromol. Sci. B 52, 1073 (2013).

    Article  Google Scholar 

  21. D.S. Saidina, M. Mariatti, and M.J. Julie, J. Mater. Sci. 25, 4923 (2014).

    Google Scholar 

  22. Z.J. Wang, W.Y. Zhou, X.Z. Sui, L.N. Dong, H.W. Cai, J. Zuo, and Q.G. Chen, J. Electron. Mater. 45, 3069 (2016).

    Article  Google Scholar 

  23. K. Gaska, A. Rybak, and C. Kapusta, Polym. Adv. Technol. 26, 26 (2015).

    Article  Google Scholar 

  24. B.L. Zhang, Q.Y. Zhang, H.P. Zhang, X.F. Lei, D.Z. Yin, X.L. Fan, and L.W. Zhou, J. Polym. Res. 19, 1 (2012).

    Article  Google Scholar 

  25. D.J. Cumberland and R.J. Crawford, Handbook of Powder Technology: The Packing of Particles, vol. VI (Amsterdam: Elsevier, 1987) 33.

  26. S. Choi and J. Kim, Compos. B 51, 140 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Science Foundation of China (51577154, 51073180), Shaanxi Provincial Natural Science Foundation of China (2016JM5014), the Scientific Research Program funded by Shaanxi Provincial Education Commission (14JK1485), the Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology (JZK201301), and the Foundation for Key Program of Ministry of Education, China (212175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, X., Zhou, W., Dong, L. et al. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity. J. Electron. Mater. 45, 5974–5984 (2016). https://doi.org/10.1007/s11664-016-4834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4834-5

Keywords

Navigation