Skip to main content
Log in

The study of optical, structural and magnetic properties of Cu-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide is a multifunctional material with important applications in areas like electronics, optoelectronics, sensors and photocatalysis. In the present work, the Cu-doped ZnO (Cu = 0%, 2% and 5%) nanoparticles have been synthesized and investigated using various techniques like XRD, SEM, XPS, PL and UV spectroscopic measurements. The study is aimed at exploring the mechanism of room-temperature ferromagnetism in these dilute magnetic semiconductors, which has been a mystery for a long time. The X-ray diffraction patterns revealed the hexagonal wurtzite crystal structure of the P63mc space group and an average crystalline size of 26 nm to 32 nm. The morphology has been analyzed using SEM images, which depict irregular grain size distribution and agglomerated spheroid-like particle structure. The X-ray photoelectron spectroscopy (XPS) findings exhibited the inducement of remarkable oxygen vacancies (Vo) with Cu doping. The 2% Cu-doped sample shows the maximum value of the oxygen vacancies. The magnetization measurements reveal weak ferromagnetism in the pure ZnO sample, whereas the Cu-doped ZnO nanocrystalline samples show remarkable room temperature ferromagnetism (RTFM). The 2% Cu-doped sample depicts the highest value of saturation magnetization. The UV spectroscopy indicates that the band gap is reduced upon Cu doping; the value of Eg is found to be the lowest (2.96 eV) for the 2% Cu-doped sample. The Photoluminescence (PL) spectroscopy indicates the presence of defect-related states, which are found to be the maximum for the 2% Cu-doped sample, in good agreement with the XPS results. The induced magnetization in the Cu-doped nano-crystalline samples is found to show a direct relationship with the oxygen vacancies and is proposed to be caused by the exchange interactions between the Cu2+ ions and the oxygen vacancies. The inducement of ferromagnetism in ZnO renders it a potential system for spintronic devices. The key benefits of spintronic devices are their compact size, excellent luminous efficiency, ecologically benign composition, long persistence and potential energy savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11 
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

On request, data will be made available.

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  CAS  Google Scholar 

  2. I. Zutic, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323 (2004)

    Article  CAS  Google Scholar 

  3. K. Ando, Magneto-optical studies of s, p-d exchange interactions in GaN: Mn with room-temperature ferromagnetism. Appl. Phys. Lett. 82(1), 100–102 (2003)

    Article  CAS  Google Scholar 

  4. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79(7), 988–990 (2001)

    Article  CAS  Google Scholar 

  5. M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, Y. Li, Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceram. Int. 43(3), 3166–3170 (2017). https://doi.org/10.1016/j.ceramint.2016.11.137

    Article  CAS  Google Scholar 

  6. P. Singh, R. Kumar, R.K. Singh, Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Ind. Eng. Chem. Res. 58(37), 17130–17163 (2019)

    Article  CAS  Google Scholar 

  7. H. Pan, Y. Zhang, Y. Hu, H. Xie, Effect of cobalt doping on optical, magnetic and photocatalytic properties of ZnO nanoparticles. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164560

    Article  Google Scholar 

  8. D. More, C. Phadnis, S. Basu, A. Pathak, I. Dubenko, N. Ali, S.N. Jha, D. Bhattacharyya, S. Mahamuni, Correlation of structural and magnetic properties of Ni-doped ZnO nanocrystals. J. Phys. D Appl. Phys. 47(4), 045308 (2014)

    Article  CAS  Google Scholar 

  9. Z.N. Kayani, S. Iram, R. Rafi, S. Riaz, S. Naseem, Effect of Cu doping on the structural, magnetic and optical properties of ZnO thin films. Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-1886-9

    Article  Google Scholar 

  10. V. Bhosle, A. Tiwari, J. Narayan, Electrical properties of transparent and conducting Ga doped ZnO. J. Appl. Phys. 100(3), 033713 (2006)

    Article  Google Scholar 

  11. A.K. Keshari, P. Gupta, M. Singh, ZnO nanoparticles doping with transition metal elements in polymeric and biomacromolecular matrix and their optical evolution. Opt. Mater. 111, 110697 (2021)

    Article  CAS  Google Scholar 

  12. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura, J.S. Chen, Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90(3), 032509 (2007)

    Article  Google Scholar 

  13. L.N. Tong, X.M. He, H.B. Han, J.L. Hu, A.L. Xia, Y. Tong, Effects of H2 annealing on ferromagnetism of Ni-doped ZnO powders. Solid State Commun. 150(25–26), 1112–1116 (2010)

    Article  CAS  Google Scholar 

  14. R. Lardé, E. Talbot, P. Pareige, H. Bieber, G. Schmerber, S. Colis, V.P. Bohnes, A. Dinia, Evidence of superparamagnetic co clusters in pulsed laser deposition-grown Zn0.9Co0.1O thin films using atom probe tomography. J. Am. Chem. Soc. 133(5), 1451–1458 (2011)

    Article  Google Scholar 

  15. D. Gao, Z. Zhang, Y. Li, B. Xia, S. Shi, D. Xue, Abnormal room temperature ferromagnetism in CuO–ZnO heterostructures: interface related or not? Chem. Commun. 51, 1151–1153 (2015)

    Article  CAS  Google Scholar 

  16. R. Heinhold, H.S. Kim, F. Schmidt, H.V. Wenckstern, M. Grundmann, R. Mendelsberg, R.J. Reeves, S.M. Durbin, M.W. Allen, Optical and defect properties of hydrothermal ZnO with low lithium contamination. Appl. Phys. Lett. 101(6), 062105 (2012)

    Article  Google Scholar 

  17. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)

    Article  CAS  Google Scholar 

  18. Y. Köseoğlu, Rapid synthesis of room temperature ferromagnetic Fe and Co co-doped ZnO DMS nanoparticles. Ceram. Int. 41(9), 11655–11661 (2015)

    Article  Google Scholar 

  19. G. Tang, X. Shi, C. Huo, Z. Wang, Room temperature ferromagnetism in hydrothermally grown Ni and Cu co-doped ZnO nanorods. Ceram. Int. 39(5), 4825–4829 (2013)

    Article  CAS  Google Scholar 

  20. G. Srinet, P. Varshney, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S. Sharma, Structural, optical and magnetic properties of Zn1−xCoxO prepared by the sol–gel route. Ceram. Int. 39(6), 6077–6085 (2013)

    Article  CAS  Google Scholar 

  21. N. Doğan, A. Bingölbali, L. Arda, Preparation, structure and magnetic characterization of Ni doped ZnO nano-particles. J. Magn. Magn. Mater. 373, 226–230 (2015)

    Article  Google Scholar 

  22. L.M. Huang, A.L. Rosa, R. Ahuja, Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys. Rev. B 74(7), 075206 (2006)

    Article  Google Scholar 

  23. M. Ferhat, A. Zaoui, R. Ahuja, Magnetism and band narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94(14), 142502 (2009)

    Article  Google Scholar 

  24. G.A. Ali, M.E. Ismail, M.E. Hagary, E.R. Shaaban, S.H. Moustafa, M.I. Amer, H. Shaban, Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic application. Opt. Mat. (2021). https://doi.org/10.1016/j.optmat.2021.111312

    Article  Google Scholar 

  25. P.K. Sharma, R.K. Dutta, A.C. Paney, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO: Cu2+ nanorods. J. Magn. Magn. Mater. 321(24), 4001–4005 (2009)

    Article  CAS  Google Scholar 

  26. O.A. Yıldırım, C. Durucan, Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization. Ceram. Int 42(2B), 3229–3238 (2016)

    Article  Google Scholar 

  27. Z. Wang, W. Xiao, M. Tian, N. Qin, H. Shi, X. Zhang, W. Zha, J. Tao, J. Tian, Effects of copper dopants on the magnetic property of lightly Cu-Doped ZnO nanocrystals. Nanomaterials 10(8), 1578 (2020). https://doi.org/10.3390/nano10081578

    Article  CAS  Google Scholar 

  28. K.C. Verma, R.K. Kotnala, Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu. Ce ions. J. Solid State Chem. 246, 150–159 (2017)

    Article  CAS  Google Scholar 

  29. M.H. Kane, M. Strassburg, A. Asghar, Q. Song, S. Gupta, J. Senawiratne, C. Hums, U. Haboeck, A. Hoffmann, D. Azamat, W. Gehlhoff, N. Dietz, Z.J. Zhang, C.J. Summers, I.T. Ferguson, Multifunctional III-nitride dilute magnetic semiconductor epilayers and nanostructures as a future platform for spintronic devices. Proc. SPIE 5732, 389 (2005). https://doi.org/10.1117/12.582980

    Article  CAS  Google Scholar 

  30. R.A. Zargar, M. Arora, R.A. Bhat, Study of nanosized copper-dopedZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl. Phys A (2018). https://doi.org/10.1007/s00339-017-1457-5

    Article  Google Scholar 

  31. R. Asih, D.A. Daratika, F. Astuti, M.A. Baqiya, I. Watanabe, C. Saiyasombat, M. Kato, Y. Koike, A. Rusydi, Darminto, Enhanced ferromagnetism in Cu-Substituted ZnO nanoparticles. Mat. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2021.125606

    Article  Google Scholar 

  32. B.C. Joshi, A.K. Chaudhri, Sol−gel-derived Cu-doped ZnO thin films for optoelectronic applications. ACS Omega 7, 21877–21881 (2022)

    Article  Google Scholar 

  33. A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.A. Osman, Influence of cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J. Alloys Compd. 683, 399e411 (2016)

    Article  Google Scholar 

  34. O. Alev, N. Sarıca, O. Ozdemir, L.Ç. Arslan, S. Büyükkose, Z.Z. Oztürk, Cu-doped ZnO nanorods based QCM sensor for hazardous gases. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154177

    Article  Google Scholar 

  35. L. Ye, W. Guan, C. Lu, H. Zhao, X. Lu, Fabrication of hollow ZnO hexahedral nanocrystals grown on Si (100) substrate by a facile route. Mater. Lett. 118, 115–118 (2014)

    Article  CAS  Google Scholar 

  36. S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, G. Wu, The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mat. (2022). https://doi.org/10.1007/s42114-022-00514-2

    Article  Google Scholar 

  37. D. Lan, H. Zhou, H. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy. J. Colloid Interface Sci. 633, 92–101 (2023). https://doi.org/10.1016/j.jcis.2022.11.102

    Article  CAS  Google Scholar 

  38. H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Nano-Micro small (2022). https://doi.org/10.1002/smll.202203620

    Article  Google Scholar 

  39. H. Liang, H. Xing, M. Qin, H. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomblike short carbon fibers @ Fe3O4 @ FeO composites as high-performance electromagnetic wave absorbing materials. Compos. Part A (2020). https://doi.org/10.1016/j.compositesa.2020.105959

    Article  Google Scholar 

  40. N. Chaithanatkun, K. Onlaor, B. Tunhoo, The influence of annealing temperature on structural properties of zinc oxide nanoparticles synthesized by precipitation method. Key Eng. Mat. 728, 215–220 (2017)

    Article  Google Scholar 

  41. E.H. Kisi, M.M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. C 45(12), 1867–1870 (1989). https://doi.org/10.1107/S0108270189004269

    Article  Google Scholar 

  42. R.S. Ganesh, E. Durgadevi, M. Navaneethan, VLd. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A: Phys. 269(1), 331–341 (2018). https://doi.org/10.1016/j.sna.2017.11.042

    Article  CAS  Google Scholar 

  43. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties. Physica B 407(8), 1223–1226 (2012)

    Article  CAS  Google Scholar 

  44. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr 21(1), 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  45. G.R. Khan, Crystallographic, structural and compositional parameters of Cu-ZnO nanocrystallites. Appl Phys A 126(4), 311 (2020)

    Article  CAS  Google Scholar 

  46. Y. Liu, H. Liang, L. Xu, J. Zhao, J. Bian, Y. Luo, Y. Liu, W. Li, G. Wu, G. Du, Cu, Related doublets green band emission in ZnO: Cu thin films. J. Appl. Phys. (2010). https://doi.org/10.1063/13516459

    Article  Google Scholar 

  47. M. Öztas, M. Bedir, Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516, 1703–1709 (2008)

    Article  Google Scholar 

  48. C. Prabakar, S. Muthukumaran, V. Raja, Investigation on microstructure, energy gap, photoluminescence and magnetic studies of Co and Cu in situ doped ZnOnanostructures. J. Mater. Sci.: Mater. Electron. 32(7), 9702–9720 (2021)

    CAS  Google Scholar 

  49. J.H. Park, Y.J. Lee, J.S. Bae, B.S. Kim, Y.C. Cho, C. Moriyoshi, Y. Kuroiwa, S. Lee, S.Y. Jeong, Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM. Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0887-2

    Article  Google Scholar 

  50. A. Matei, V. Ţucureanu, M.C. Popescu, C. Romani, I. Mihalache, Influence of Cu dopant on the morpho-structural and optical properties ZnO nanoparticles. Ceram. Int. 45, 10826–10833 (2019)

    Article  CAS  Google Scholar 

  51. M. Claros, M. Setka, Y.P. Jimenez, S. Vallejos, AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials 10(3), 471 (2020)

    Article  CAS  Google Scholar 

  52. B. Ghosh, S.C. Ray, M. Pontsho, S. Sarma, D.K. Mishra, Y.F. Wang, W.P. Pong, A.M. Strydom, Defect induced room temperature ferromagnetism in single crystal, poly-crystal, and nanorod ZnO: A comparative study. J. Appl. Phys. 123(16), 161507 (2018)

    Article  Google Scholar 

  53. R. Khokhra, B. Bharti, H.N. Lee, R. Kumar, Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 7, 15032 (2017)

    Article  Google Scholar 

  54. D.K. Mishra, P. Kumar, M.K. Sharma, J. Das, S.K. Singh, B.K. Roul, S. Varma, R. Chatterjee, V.V. Srinivasu, D. Kanjilal, Ferromagnetism in ZnO single crystl. Physica B: Condens. Matter (2010). https://doi.org/10.1016/j.physb.2010.03.047

    Article  Google Scholar 

  55. S. Pati, S.B. Majumder, P. Banerji, Role of oxygen vacancy in optical and gas sensing characteristics of ZnO thin films. J. Alloy. Compd. 541, 376–379 (2012). https://doi.org/10.1016/j.jallcom.2012.07.014

    Article  CAS  Google Scholar 

  56. G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Preparation of highly oriented Al: ZnO and Cu/Al: ZnO thin films by sol-gel method and their characterization. J. Alloy. Compd. 649, 275–284 (2015)

    Article  CAS  Google Scholar 

  57. K. Noipa, S. Rujirawat, R. Yimnirun, V. Promarak, S. Maensiri, Synthesis, structural, optical and magnetic properties of Cu-doped ZnO nanorods prepared by a simple direct thermal decomposition route. Appl. Phys. A 117(2), 927–935 (2014). https://doi.org/10.1007/s00339-014-8475-3

    Article  CAS  Google Scholar 

  58. A. Azam, A.S. Ahmed, M.S. Ansari, M. Shafeeq, A.H. Naqvi, Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloy. Compd. 506(1), 237–242 (2010)

    Article  CAS  Google Scholar 

  59. M.L. Singla, M. Shafeeq, M. Kumar, Optical characterization of ZnO nanoparticles capped with various surfactants. J. Lumin. 129(12), 434–438 (2009). https://doi.org/10.1016/j.jlumin.2008.11.021

    Article  CAS  Google Scholar 

  60. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushana, Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloy. Compd. 509(17), 5349–5355 (2011). https://doi.org/10.1016/j.jallcom.2011.02.043

    Article  CAS  Google Scholar 

  61. D. Anbuselvan, S. Muthukumaran, Defects related microstructure, optical and photoluminescence behavior of Ni, Cu co-doped ZnO nanoparticles by Co-precipitation method. Opt. Mater. 42, 124–131 (2015)

    Article  CAS  Google Scholar 

  62. S. Anandan, S. Muthukumaran, M. Ashokkumar, Structural and optical properties of Y, Cu co-doped ZnO nanoparticles by sol-gel method. Superlattices Microstruct. 74, 247–260 (2014)

    Article  CAS  Google Scholar 

  63. R. Bhardwaj, A. Bharti, J.P. Singh, K.H. Chae, N. Goyal, Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures. Nanoscale-Advanc (2020). https://doi.org/10.1039/d0na00499e

    Article  Google Scholar 

  64. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, A. Sukolrat, N. Muensit, The dependence of optical properties on the morphology and defects of nanocrystalline ZnO powders and their antibacterial activity. J. Ceram. Process. Res. 11(5), 547–551 (2010)

    Google Scholar 

  65. M. Sajjad, I. Ullaha, M.I. Khanb, J. Khanc, M.Y. Khana, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 9, 1301–1309 (2018). https://doi.org/10.1016/j.rinp.2018.04.010

    Article  Google Scholar 

  66. A.I. Istrate, I. Mihalache, C. Romanitan, O. Tutunaru, R. Gavrila, V. Dediu, Copper doping effect on the properties in ZnO films deposited by sol–gel. J Mater Sci: Mater Electron 32, 4021–4033 (2021)

    CAS  Google Scholar 

  67. S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation oforganic dyes by Cu doped ZnOnanostructures. Phys. Chem. Chem. Phys. 17, 25172 (2015). https://doi.org/10.1039/c5cp01681a

    Article  CAS  Google Scholar 

  68. B. Lin, Z. Fua, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001)

    Article  CAS  Google Scholar 

  69. X. Peng, J. Xu, H. Zang, B. Wang, Z. Wang, Structural and PL properties of Cu-doped ZnO films. J. Lumin. 128(3), 297–300 (2008)

    Article  CAS  Google Scholar 

  70. T. Gao, G. Meng, Y. Tian, S. Sun, X. Liu, L. Zhang, Photoluminescence of ZnO nanoparticles loaded into porous anodic alumina hosts. J. Phys.: Condens. Matter 14(7), 12651–12656 (2002)

    CAS  Google Scholar 

  71. B.J. Kwon, J.Y. Kim, S.M. Choi, S.J. An, Highly transparent and conducting graphene-embedded ZnO films with enhanced photoluminescence fabricated by aerosol synthesis. Nanotechnology 25, 085701 (2014)

    Article  CAS  Google Scholar 

  72. S. Dhara, P.K. Giri, Improved fast photoresponse from Al doped ZnO nanowires network decorated with Au nanoparticles. Chem. Phys. Lett. 541, 39–43 (2012)

    Article  CAS  Google Scholar 

  73. C.R. Michea, M. Morel, F. Gracia, G. Morell, E. Mosquera, Influence of copper doping on structural, morphological, optical, and vibrational properties of ZnO nanoparticles synthesized by sol gel method. Surf. Interfaces 21, 100700 (2020)

    Article  Google Scholar 

  74. J.P. Singh, K.H. Chae, d0 Ferromagnetism of magnesium oxide. Matter. Condens. (2017). https://doi.org/10.3390/condmat2040036

    Article  Google Scholar 

  75. S. Krishnamurthy, C.M. Guinness, L.S. Dorneles, M. Venkatesan, J.M.D. Coey, J.G. Lunney, C.H. Patterson, K.E. Smith, T. Learmonth, P.A. Glans, J.H. Guo, Soft-X-ray spectroscopic investigation of ferromagnetic Co-doped ZnO. J. Appl. Phys. 99(08), M111 (2006)

    Article  Google Scholar 

  76. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  CAS  Google Scholar 

  77. J.E. Jaffe, T.C. Droubay, S.A. Chambers, Oxygen vacancies and ferromagnetism in CoxTi1−xO2−x−y. J. Appl. Phys. 97, 073908–073910 (2005). https://doi.org/10.1063/1.1868056

    Article  CAS  Google Scholar 

  78. W. Yan, Z. Sun, Z. Pan, Q. Liu, T. Yao, Z. Wu, C. Song, F. Zeng, Y. Xie, T. Hu, S. Wei, Oxygen vacancy effect on room-temperature ferromagnetism of rutile Co: TiO2 thin films. Appl. Phys. Lett. 94, 042508–042510 (2009). https://doi.org/10.1063/1.3075844

    Article  CAS  Google Scholar 

  79. K.G. Roberts, M. Varela, S. Rashkeev, S.T. Pantelides, S.J. Pennycook, K.M. Krishnan, Defect-mediated ferromagnetism in insulating Co-doped anatase TiO2 thin films. Phys. Rev. B 78(1), 014409–0140914 (2008). https://doi.org/10.1103/PhysRevB.78.014409

    Article  CAS  Google Scholar 

  80. K.A. Griffin, A.B. Pakhomov, C.M. Wang, S.M. Heald, K.M. Krishnan, Interinic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94(15), 157204–157207 (2005). https://doi.org/10.1103/PhysRevLett.94.157204

    Article  CAS  Google Scholar 

  81. W. Liu, X. Tang, Z. Tang, F. Chu, T. Zeng, N. Tang, Role of oxygen defects in magnetic property of Cu doped ZnO. J. Alloy. Compd. 615, 740–744 (2014)

    Article  CAS  Google Scholar 

  82. Z. Ma, F. Ren, X. Ming, Y. Long, A.A. Volinsky, Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12(1), 196 (2019)

    Article  CAS  Google Scholar 

  83. N.M.A. Hadia, M. Aljudai, M. Alzaid, S.H. Mohamed, W.S. Mohamed, Synthesis and characterization of undoped and copper-doped zinc oxide nanowires for optoelectronic and solar cells applications. Appl. Phys. A (2022). https://doi.org/10.1007/s00339-021-05155-8

    Article  Google Scholar 

  84. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett. 90(14), 142502 (2007)

    Article  Google Scholar 

  85. Y. Chen, X. Xu, X. Li, G. Zhang, Vacancy induced room temperature ferromagnetism in Cu-doped ZnO nanofibers. Appl. Surf. Sci. 506, 144905 (2020)

    Article  CAS  Google Scholar 

  86. P.S. Vachhani, G. Dalba, R.K. Ramamoorthy, F. Rocca, O. Šipr, A.K. Bhatnagar, Cu doped ZnO pellets: study of structure and Cu specific magnetic properties. J. Phys. Cond. Mat. 24(50), 506001 (2012)

    Article  Google Scholar 

  87. X. Qing-Yu, Z. Xiao-Hong, G. You-Pin, Paramagnetism in Cu-doped ZnO. Chin. Phys. B 19(7), 077501 (2010)

    Article  Google Scholar 

  88. Q. Wang, J. Wang, X. Zhong, Q. Tan, Y. Zhou, The magnetic phase transition in Cu-doped ZnO: From bulk to nanocluster. Solid State Commun. 152(1), 50–52 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Bansathali Vidhyapith, Banasthali, Rajasthan (India) for providing XRD data and USIC, University of Rajasthan, Jaipur, Rajasthan (India), for obtaining SEM measurements.

Funding

This research has not been financially supported.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the original study conceptualization and design. Material synthesis, data collection, analysis and manuscript writing have been performed by [MKG], writing and sample preparation [AK], characterization and data interpretations [SK], data analysis [JN], data collection and interpretation [BLC], data analysis, editing and reviewing [SND] and writing, editing, review and supervision [RKS]. The final manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Mahendra Kumar Gora.

Ethics declarations

Competing interest

The authors state that they have no personal or financial conflicts that would have appeared to have impacted the research provided in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gora, M.K., Kumar, A., Kumar, S. et al. The study of optical, structural and magnetic properties of Cu-doped ZnO nanoparticles. J Mater Sci: Mater Electron 34, 288 (2023). https://doi.org/10.1007/s10854-022-09713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09713-5

Navigation