Skip to main content
Log in

Improvement in Thermoelectric Properties by Tailoring at In and Te Site in In2Te5

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We study the role of substitutions at In and Te site in the thermoelectric behavior of In2Te5. Single crystals with compositions In2(Te1−x Se x )5 (x = 0, 0.05, 0.10) and Fe0.05In1.95(Te0.90Se0.10)5 were prepared using a modified Bridgman–Stockbarger technique. Electrical and thermal transport properties of these single crystals were measured in the temperature range of 6 K to 395 K. A substantial decrease in the thermal conductivity was observed in Fe-substituted samples, attributed to enhanced phonon scattering at point defects. Marked enhancement in the Seebeck coefficient S along with concomitant suppression of the electrical resistivity ρ was observed in Se-substituted single crystals. An overall enhancement of the thermoelectric figure of merit (zT) by a factor of 310 was observed in single-crystal Fe0.05In1.95(Te0.90Se0.10)5 compared with single crystals of the parent material In2Te5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  2. B. Yang, H. Ahuja, and T.N. Tran, HVAC R Res. 14, 635 (2008).

    Article  Google Scholar 

  3. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).

  4. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  Google Scholar 

  5. T.M. Tritt, M. Kanatzidis, G. Mahan, and H.B. Lyon, Mater. Res. Soc. Symp. Proc. 478 (1997).

  6. T. Hendricks and W.T. Choate, Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery (US Department of Energy, Pacific Northwest, 2006).

  7. J. Yang, Proceedings of 24th International Conference on Thermoelectrics, p. 155 (2005).

  8. X. Shi, J.Y. Cho, J.R. Salvador, J. Yang, and H. Wang, Appl. Phys. Lett. 96, 162108 (2010).

    Article  Google Scholar 

  9. G.H. Zhu, Y.C. Lan, H. Wang, G. Joshi, Q. Hao, G. Chen, and Z.F. Ren, Phys. Rev. B 83, 115201 (2011).

    Article  Google Scholar 

  10. J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).

    Article  Google Scholar 

  11. J.S. Rhyee and J.H. Kim, Materials 8, 1283 (2015).

    Article  Google Scholar 

  12. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and G. Kanatzidis, Nature 508, 303 (2014).

    Article  Google Scholar 

  13. M.M. Nassary, M. Dongal, M.K. Gerges, and M.A. Sebage, Phys. Stat. Sol. (a) 199, 464 (2003).

    Article  Google Scholar 

  14. A.V. Sanchela, A.D. Thakur, and C.V. Tomy, AIP Conf. Proc. 1591, 1392 (2014).

    Article  Google Scholar 

  15. H. Mun, K.H. Lee, S.J. Kim, J.Y. Kim, J.H. Lee, J.H. Lim, H.J. Park, J.W. Roh, and S.W. Kim, Materials 8, 959 (2015).

    Article  Google Scholar 

  16. X. Liang and A.C.S. Appl, Mater. Interfaces 7, 7927 (2015).

    Article  Google Scholar 

  17. A.K. Yadav (Ph.D. thesis, IIT Bombay, 2014).

  18. C.B. Huang, Y.B. Ni, H.X. Wu, Z.Y. Wang, X.D. Cheng, and R.C. Xiao, J. Inorg. Mater. 29 (2014).

  19. L.M. Caroline (Ph.D. thesis, Chapter 1, Bharath University, 2010).

  20. P. Gille, M. Muhlberg, L. Parthier, and P. Rudolph, Cryst. Res. Technol. 19, 881 (1984).

    Article  Google Scholar 

  21. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd ed. (McGraw-Hill, New York, 2005).

  22. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  23. T.M. Tritt, Thermal Conductivity, Theory, Properties and Applications (Kluwer Academic/Plenum, New York, 2004).

  24. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).

  25. E.F. Westrum and N. Komada, Thermochim. Acta 109, 11 (1986).

    Article  Google Scholar 

  26. Y. Du, Z.X. Cheng, S.X. Dou, X.L. Wang, H.Y. Zhao, and H. Kimura, Appl. Phys. Lett. 97, 122502 (2010).

    Article  Google Scholar 

  27. W. Zhixin, S. Bin, and L. Jinbin, Trans. Nonferrous Met. Soc. China 21, 1309 (2011).

    Article  Google Scholar 

  28. I.K. Dimitrov, M.E. Manley, S.M. Shapiro, J. Yang, W. Zhang, L.D. Chen, Q. Jie, G. Ehlers, A. Podlesnyak, J. Camacho, and Qiang Li, Phys. Rev. B 82, 174301 (2010).

  29. H. Liu, J. Yang, X. Shi, S.A. Danilkin, D. Yu, C. Wang, W. Zhang, and L. Chen, J. Materiomics (2016), http:// dx.doi.org/10.1016/j.jmat.2016.05.006.

Download references

Acknowledgements

The authors would like to acknowledge the Indian Department of Science and Technology for partial support through project IR/S2/PU-10/2006. A.D.T. would like to acknowledge partial support from the Center for Energy and Environment, Indian Institute of Technology Patna (IITP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup V. Sanchela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchela, A.V., Thakur, A.D. & Tomy, C.V. Improvement in Thermoelectric Properties by Tailoring at In and Te Site in In2Te5 . J. Electron. Mater. 45, 5540–5545 (2016). https://doi.org/10.1007/s11664-016-4778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4778-9

Keywords

Navigation