Skip to main content
Log in

Direction-Dependent Thermoelectric Properties of a Layered Compound In2Te5 Single Crystal

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We examine the anisotropic electrical and thermal transport properties in single crystals of In2Te5 belonging to the monoclinic space group C12/c1 with the temperature gradient applied parallel (||) and perpendicular (\(\perp \) ) to the crystallographic c-axis of the crystals. A systematic investigation of structural, electrical, and thermal properties suggests the role of layered structure in this material in guiding its thermoelectric behavior. The thermal conductivity along the c-axis (κ||c) was found to be smaller by a factor of 2 compared to the thermal conductivity along the direction perpendicular to the c-axis (κ\(_{\perp{c}}) \) over the entire temperature range. In contrast, the Seebeck coefficient along the c-axis (S||c) was found to be higher than its value along the direction perpendicular to the c-axis \((S_{\perp{c}}) \). At room temperature, the figure of merit zT||c is found to be four times larger as compared to the figure of merit \(zT_{{\perp}c} \). Our results provide insights into how the resistivity, thermal conductivity, and thermopower depends on the crystalline anisotropy and its impact on the overall zT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Book  Google Scholar 

  2. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  CAS  Google Scholar 

  3. T. M. Tritt, M. Kanatzidis, G. Mahan, and H. B. Lyon, Mater. Res. Soc. Symp. Proc. 478, (1997).

  4. K. Koumoto, and T. Mori, Thermoelectric nanomaterials: materials design and applications (Berlin: Springer, 2013).

    Book  Google Scholar 

  5. P. Vaqueiro, and A.V. Powell, J. Mater. Chem. 20, 9577 (2010).

    Article  CAS  Google Scholar 

  6. C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Technol. Adv. Mater. 11, 044306 (2010).

    Article  Google Scholar 

  7. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).

    Article  CAS  Google Scholar 

  8. Q. Zhanga, B. Liaob, Y. Lana, K. Lukasc, W. Liua, K. Esfarjanib, C. Opeilc, D. Broidoc, G. Chenb, and Z. Rena, PNAS 110, 13261 (2013).

    Article  Google Scholar 

  9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  10. L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).

    Article  CAS  Google Scholar 

  11. C. Nethravathi, C.R. Rajamathi, M. Rajamathi, R. Maki, T. Mori, D. Golberg, and Y. Bando, J. Mater. Chem. A. 2, 985 (2014).

    Article  CAS  Google Scholar 

  12. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  13. P. Larson, S.D. Mahanti, D.Y. Chung, and M.G. Kanatzidis, Phys. Rev. B. 65, 045205 (2002).

    Article  Google Scholar 

  14. D.L. Medlin, Q.M. Ramasse, C.D. Spataru, and N.Y.C. Yang, J. Appl. Phys. 108, 043517 (2010).

    Article  Google Scholar 

  15. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren, Nano Lett. 10, 3373 (2010).

    Article  CAS  Google Scholar 

  16. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  17. S. Lee, J. In, Y. Yoo, Y. Jo, Y.C. Park, H.J. Kim, H.C. Koo, J. Kim, B. Kim, and K.L. Wang, Nano Lett. 12, 4194 (2012).

    Article  CAS  Google Scholar 

  18. D. Jung, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Mater. Trans. 53, 1216 (2012).

    Article  CAS  Google Scholar 

  19. M.H. Lee, K.R. Kim, J.S. Rhyee, S.D. Park, and G.J. Snyder, J. Mater. Chem. C 3, 10494 (2015).

    Article  CAS  Google Scholar 

  20. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and G. Kanatzidis, Nature 508, 303 (2014).

    Article  Google Scholar 

  21. M. Taniguchi, R.L. Johnson, J. Ghijsen, and M. Cardona, Phys. Rev. B. 78, 104204 (1990).

    Google Scholar 

  22. P. Jood, and M. Ohta, Materials 8, 1124 (2015).

    Article  CAS  Google Scholar 

  23. P.D. Walton, H.H. Sutherland, and J.H.C. Hogg, Acta Cryst. B 34, 41 (1978).

    Article  Google Scholar 

  24. X. Shi, J.Y. Cho, J.R. Salvador, J. Yang, and H. Wang, Appl. Phys. Lett. 96, 162108 (2010).

    Article  Google Scholar 

  25. M.M. Nassary, M. Dongal, M.K. Gerges, and M.A. Sebage, Phys. Stat. Sol. (a) 199, 464 (2003).

    Article  CAS  Google Scholar 

  26. E.G. Grochowski, P.R. Mason, G.A. Schmitt, and P.H. Smiths, J. Phys. Chem. Solids 25, 551 (1964).

    Article  CAS  Google Scholar 

  27. H.J. Goldsmid, and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  CAS  Google Scholar 

  28. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  CAS  Google Scholar 

  29. J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).

    Article  CAS  Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, 7th ed., (New York: John Wiley, 1996).

    Google Scholar 

  31. W. Zhang, N. Sato, K. Tobita, K. Kimura, and T. Mori, Chem. Mater. 32, 5335 (2020).

    Article  CAS  Google Scholar 

  32. A.V. Sanchela, A.D. Thakur, and C.V. Tomy, J. Electron. Mater. 45, 5540 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CVT would like to acknowledge the Department of Science and Technology for partial support through the project IR/S2/PU-10/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup V. Sanchela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchela, A.V., Thakur, A.D. & Tomy, C.V. Direction-Dependent Thermoelectric Properties of a Layered Compound In2Te5 Single Crystal. J. Electron. Mater. 51, 2266–2272 (2022). https://doi.org/10.1007/s11664-022-09487-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09487-w

Keywords

Navigation