Skip to main content

Advertisement

Log in

Numerical Analysis of In2S3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of indium sulfide buffer layer’s geometrical and electro-optical properties on the Copper–Indium–Gallium–diSelenide solar cell performance using numerical simulation is investigated. The numerical simulation software used is a solar cell capacitance simulator in (SCAPS). The innermost impacts of buffer layer thickness, band gap, and doping density on the cells output parameters such as open circuit voltage, short circuit current density, fill factor, and the efficiency were extensively simulated. The results show that the cell efficiency, which was innovatively illustrated as a two-dimensional contour plot function, depends on the buffer layer electron affinity and doping density by keeping all the other parameters at a steady state. The analysis, which was made from this numerical simulation, has revealed that the optimum electron affinity is to be 4.25 ± 0.2 eV and donor density of the buffer layer is over \(1\times 10\) \(^{17}\) cm\(^{-3}\). It is also shown that the cell with an optimum thin buffer layer has higher performance and efficiency due to the lower optical absorption of the buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solar Frontier K.K., Press Release, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3% (2015).. http://www.solarfrontier.com/eng/news/2015/C051171.html. Accessed 08 Dec 2015

  2. A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, and D. Jaeger, Nat. Mater. 12, 1107 (2013).

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Physica Status Solidi (RRL)—Rapid Res. Lett. 8, 219 (2014).

    Article  Google Scholar 

  4. K. Kushia, 5th International Workshop on CIGS Solar Cell Technology Conference (IW-CIGSTech 5) (2014).

  5. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, IEEE 40th Photovoltaic Specialist (PVSC) Conference Proceedings (2014), pp. 2775.

  6. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Physica Status Solidi (RRL)—Rapid Res. Lett. 9, 28 (2015).

  7. S. Siebentritt, Solar Energy 77, 767 (2004).

    Article  Google Scholar 

  8. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Btzner, F.J. Haug, M. Klin, D. Rudmann, and A.N. Tiwari, Prog. Photovolt.: Res. Appl. 12, 93 (2004).

    Article  Google Scholar 

  9. K. Ernits, D. Brmaud, S. Buecheler, C.J. Hibberd, M. Kaelin, G. Khrypunov, U. Mller, E. Mellikov, and A.N. Tiwari, Thin Solid Films 515, 6051 (2007).

    Article  Google Scholar 

  10. N. Barreau, J.C. Bernede, S. Marsillac, and A. Mokrani, J. Cryst. Growth 235, 439 (2002).

    Article  Google Scholar 

  11. N. Revathi, P. Prathap, Y.P.V. Subbaiah, and K.R. Reddy, J. Phys. D: Appl. Phys. 41, 155404 (2008).

    Article  Google Scholar 

  12. F. Saadallah, N. Jebbari, N. Kammoun, and N. Yacoubi, Int. J. Photoenergy 2011, 1 (2011).

    Article  Google Scholar 

  13. K. Kihwan, L. Larina, J.H. Yun, K.H. Yoon, H. Kwon, and B.T. Ahn, Phys. Chem. Chem. Phys. 15, 9239 (2013).

    Article  Google Scholar 

  14. Z.Z. Yang, E.S. Cho, and S.J. Kwon, Thin Solid Films 547, 22 (2013).

    Article  Google Scholar 

  15. E. Chassaing, N. Naghavi, S. Galanti, G. Renou, M. Soro, Ml Bouttemy, A. Etcheberry, and D. Lincot, ECS Trans. 50, 93 (2013).

    Article  Google Scholar 

  16. D. Hauschild, F. Meyer, A. Benkert, D.K. Lorenzo, S. Pohlner, J. Palm, M. Blum, W. Yang, R.G. Wilks, M. Bar, and C. Heske, J. Phys. Chem. C 119, 10412 (2015).

    Article  Google Scholar 

  17. M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, D. Hariskos, and R. Menner, IEEE J. Photovolt. 4, 440 (2014).

    Article  Google Scholar 

  18. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, Prog. Photovolt.: Res. Appl. 11, 437 (2003).

    Article  Google Scholar 

  19. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361, 527 (2000).

    Article  Google Scholar 

  20. S. Degrave, M. Burgelman, and P. Nollet, 3rd World Conference on Photovoltaic Energy Conversion Proceedings (2013), pp. 487–490.

  21. M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Prog. Photovolt.: Res. Appl. 12, 143 (2004).

    Article  Google Scholar 

  22. A. Niemegeers, S. Gillis, and M. Burgelman, 2nd World Conference on Photovoltaic Energy Conversion Conference Proceedings (1998)

  23. M. Gloeckler, A.L. Fahrenbruch, and J.R. Sites, 3rd World Conference on Photovoltaic Energy Conversion Conference Proceedings (2003), pp. 491–494

  24. S. Siebentritt, Wide-Gap Chalcopyrites (Berlin: Springer, 2006).

    Book  Google Scholar 

  25. F.K. Shan and Y.S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004).

    Article  Google Scholar 

  26. R.K. Shukla, A. Srivastava, A. Srivastava, and K.C. Dubey, J. Cryst. Growth 294, 427 (2006).

    Article  Google Scholar 

  27. S.M. Sze and K. Ng, Kwok Physics of Semiconductor Devices (New York: Wiley, 2006).

    Book  Google Scholar 

  28. N. Barreau, S. Marsillac, D. Albertini, and J.C. Bernede, Thin Solid Films 403, 331 (2002).

    Article  Google Scholar 

  29. N. Barreau, S. Marsillac, J.C. Bernede, and L. Assmann, J. Appl. Phys. 93, 5456 (2003).

    Article  Google Scholar 

  30. R. Robles, N. Barreau, A. Vega, S. Marsillac, J.C. Bernede, and A. Mokrani, Opt. Mater. 27, 647 (2005).

    Article  Google Scholar 

  31. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon, S. Shafie, and N. Amin, IEEE Circuits and Systems (ICCAS) Conference Proceedings (2013) , pp. 86–91.

  32. N. Khoshsirat, and N.A. Md Yunus, IEEE Sustainable Utilization and Development in Engineering and Technology (CSUDET) Conference Proceedings, (2013), pp. 63–67

  33. N. Khoshsirat, N.A.M. Yunus, M.N. Hamidon, S. Shafie, and N. Amin, Optik—Int. J. Light Electron. Opt. 126, 681 (2015).

    Article  Google Scholar 

  34. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon, S. Shafie, and N. Amin, Pertan. J. Sci. Technol. 23, 241 (2015).

    Google Scholar 

  35. B.T. Ahn, L. Larina, K.H. Kim, and S.J. Ahn, Pure Appl. Chem. 80, 2091 (2008).

    Article  Google Scholar 

  36. D.M. Berg, R. Djemour, L. Gtay, G. Zoppi, S. Siebentritt, and P.J. Dale, Thin Solid Films 520, 6291 (2012).

    Article  Google Scholar 

  37. R. Scheer and H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (New York: Wiley, 2011), pp. 235–275.

    Book  Google Scholar 

  38. N. Bouguila, M. Kraini, A. Timoumi, I. Halidou, C. Vzquez-Vzquez, M.A. Lpez-Quintela, and S. Alaya, J. Mater. Sci. Mater. Electron. 26, 7639 (2015).

    Article  Google Scholar 

  39. M.B. Baer, N.C. Devy, F. Weinhardt, L. Wilks, R.G. Kessler, and C. Heske, ACS Appl. Mater. Interfaces 8, 2120 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Amziah Md Yunus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshsirat, N., Md Yunus, N.A. Numerical Analysis of In2S3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS. J. Electron. Mater. 45, 5721–5727 (2016). https://doi.org/10.1007/s11664-016-4744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4744-6

Keywords

Navigation