Skip to main content
Log in

Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In\(_2\)O\(_3\) Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this research, high-quality Sn doped indium oxide (ITO) thin films were grown on glass slide substrates using an electron beam evaporation method. Vacuum chamber partial pressure was changed and the electro-optical as well as the microstructure parameters were investigated. The microstructure of prepared films was evaluated by x-ray diffraction analysis in terms of crystallite size and dislocation density. It was found that the best results [high transparency (88%) over the visible wavelength region, low sheet resistance of 12.8 \(\Omega \)/square, the optical band gap of 3.76 eV, crystallite size of 49.5 nm and dislocation density of \( 1.42 \times \,10^{14}\) m\(^{-2}\)] were achieved for the sample produced at a partial pressure of \( 1 \times \,10^{-4}\) mbar. Therefore, one can successfully control the physical properties of ITO films by varying the oxygen content of the evaporation system. The correlation between the band gap and carrier concentration in addition to the average crystallite size of films was also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Khiabani, E. Marzbanrad, C. Zamani, R. Riahifar, and B. Raissi, Sens. Actuators B 166, 128 (2012).

    Article  Google Scholar 

  2. U. Betz, M. Kharrazi Olsson, J. Marthy, M.F. Escol, and F. Atamny, Surf. Coat. Technol. 200, 5751 (2006).

    Article  Google Scholar 

  3. A.J. Moule and K. Meerholz, Appl. Phys. B 92, 209 (2008).

    Article  Google Scholar 

  4. S. Heusing, P.W. de Oliveira, E. Kraker, A. Haase, C. Palfinger, and M. Veith, Thin Solid Films 518, 1164 (2009).

    Article  Google Scholar 

  5. H.R. Fallah, M.G. Varnamkhasti, and M.J. Vahid, Renew. Energy 35, 1527 (2010).

    Article  Google Scholar 

  6. M.G. Varnamkhasti and V. Soleimanian, J. Mater. Sci. 26, 3223 (2015).

    Google Scholar 

  7. J. Zheng, R. Yang, Y. Lou, W. Li, and X. Li, Thin Solid Films 521, 137 (2012).

    Article  Google Scholar 

  8. Z.X. Mei, Y. Wang, X.L. Du, Z.Q. Zeng, M.J. Ying, H. Zheng, J.F. Jia, Q.K. Xue, and Z. Zhang, J. Cryst. Growth 289, 686 (2006).

    Article  Google Scholar 

  9. X. Niu, H. Zhong, X. Wang, and K. Jiang, Sens. Actuators B 115, 434 (2006).

    Article  Google Scholar 

  10. M.A. Flores-Mendoza, R. Castanedo-Perez, G. Torres-Delgado, S.A. Toms, J.G. Mendoza-Alvarez, and O. Zelaya-Angel, J. Lumin. 130, 2500 (2010).

    Article  Google Scholar 

  11. F. Kurdesau, G. Khripunov, A.F. Dacunha, M. Kaelin, and A.N. Tiwari, J. Non-Cryst. Solids 352, 1466 (2006).

    Article  Google Scholar 

  12. Z. Qiao and D. Mergel, Thin Solid Films 484, 146 (2005).

    Article  Google Scholar 

  13. H.I. Elim, W. Ji, and F. Zhu, Appl. Phys. B 82, 439 (2006).

    Article  Google Scholar 

  14. E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natsakou, V. Cimalla, and G. Kiriakidis, Sens. Actuators B 80, 155 (2001).

    Article  Google Scholar 

  15. K.M. Byun, N.H. Kim, J.W. Leem, and J.S. Yu, Appl. Phys. B 803, 107 (2012).

    Google Scholar 

  16. H.Y. Yeom, N. Popovich, E. Chason, and D.C. Paine, Thin Solid Films 411, 17 (2002).

    Article  Google Scholar 

  17. A.L. Dawar and J.C. Joshi, J. Mater. Sci. 19, 1 (1984).

    Article  Google Scholar 

  18. H.R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, Mater. Res. Bull. 42, 487 (2007).

    Article  Google Scholar 

  19. H.M. Ali, M.M.A. El-Raheem, N.M. Megahed, and H.A. Mohamed, J. Phys. Chem. Solids 67, 1823 (2006).

    Article  Google Scholar 

  20. M.M. El-Nahass, M.H. Ali, and A. El-Denglawey, Trans. Nonferr. Metal. Soc. 22, 3003 (2012).

    Article  Google Scholar 

  21. W.L. Bragg and A.B. Pippard, Acta. Crystallogr. 6, 865 (1953).

    Article  Google Scholar 

  22. M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, and B. Vidal, Thin Solid Films 57, 173 (1979).

    Article  Google Scholar 

  23. J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, and C. Sone, Adv. Mater. 20, 801 (2008).

    Article  Google Scholar 

  24. A.J.C. Wilson, Il Nuovo Cim. 1, 277 (1955).

    Article  Google Scholar 

  25. I. Groma, Phys. Rev. B 57, 7535 (1998).

    Article  Google Scholar 

  26. A. Borbely and T. Ungar, C. R. Phys. 13, 293 (2012).

    Article  Google Scholar 

  27. T. Ungar, I. Dragomir, A. Revesz, and A. Borbely, J. Appl. Crystallogr. 32, 992 (1999).

    Article  Google Scholar 

  28. A. Borbely and I. Groma, Appl. Phys. Lett. 79, 1772 (2001).

    Article  Google Scholar 

  29. G. Caglioti, A. Paoletti, and F.P. Ricci, Nucl. Instrum. 3, 223 (1958).

    Article  Google Scholar 

  30. Y.H. Dong and P.J. Scardi, Appl. Crystallogr. 33, 184 (2000).

    Article  Google Scholar 

  31. A. Borbely, J. Dragomir, G. Ribarik, and T. Ungar, J. Appl. Crystallogr. 36, 160 (2003).

    Article  Google Scholar 

  32. T. Ungar, A. Revesz, and A. Borbely, J. Appl. Crystallogr. 31, 554 (1998).

    Article  Google Scholar 

  33. T. Ungar, S. Ott, P.G. Sanders, A. Borbely, and J.R. Weertman, Acta Mater. 46, 3693 (1998).

    Article  Google Scholar 

  34. R. Azimirad, O. Akhavan, and A.Z. Moshfegh, J. Electrochem. Soc. 153, 11 (2006).

    Article  Google Scholar 

  35. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

  36. K.H. Choi, J.A. Jeong, and H.K. Kim, Solar Energy Mater. Solar Cells 94, 1822 (2010).

    Article  Google Scholar 

  37. E. Leja, A. Kolodziej, T. Pisarkiewicz, and T. Stapinski, Thin Solid Film 76, 283 (1981).

    Article  Google Scholar 

  38. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988).

    Article  Google Scholar 

  39. C.D. Bojorge, H.R. Cnepa, U.E. Gilabert, D. Silva, E.A. Dalchiele, and R.E. Marotti, J. Mater. Sci. 18, 1119 (2007).

    Google Scholar 

  40. S.T. Tan, B.J. Chen, X.W. Sun, and W.J. Fan, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  41. H. Kim and C.M. Gilmore, J. Appl. Phys. 86, 6451 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ghasemi Varnamkhasti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanian, V., Ghasemi Varnamkhasti, M. Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In\(_2\)O\(_3\) Nanostructures. J. Electron. Mater. 45, 5395–5403 (2016). https://doi.org/10.1007/s11664-016-4697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4697-9

Keywords

Navigation