Skip to main content
Log in

Facile, Low-Cost, UV-Curing Approach to Prepare Highly Conductive Composites for Flexible Electronics Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a facile approach to prepare high-performance ultraviolet (UV)-curable polyurethane–acrylate-based flexible electrical conductive adhesive (PUA-FECA) for flexible electronics applications. PUA is employed as the polymer matrix so that the ECA is flexible and UV-curable at room temperature in just a few minutes. The effects of the PUA-FECA formulation and curing procedure on the electrical properties have been studied. Very low volume resistivity (5.08 × 10−4 Ω cm) is obtained by incorporating 70 wt.% microsized Ag-coated Cu flakes. Moreover, by simply standing the PUA-FECA paste for 4 h before exposure to UV light, the bulk resistivity of the PUA-FECA is dramatically decreased to 3.62 × 10−4 Ω cm. This can be attributed to rearrangement of Ag-coated Cu flakes in the matrix while standing. PUA-FECA also presents stable electrical conductivity during rolling and compression, excellent adhesion, and good processability, making it easily scalable to large-scale fabrication and enabling screen-printing on various low-cost flexible substrates such as office paper and polyethylene terephthalate film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nat. Mater. 9, 1015 (2010).

    Article  Google Scholar 

  2. S.I. Park, Y. Xiong, R.H. Kim, P. Elvikis, M. Meitl, D.H. Kim, J. Wu, J. Yoon, C.J. Yu, Z. Liu, Y. Huang, K.C. Hwang, P. Ferreira, X. Li, K. Choquette, and J.A. Rogers, Science 325, 977 (2009).

    Article  Google Scholar 

  3. C. Yang, W. Lin, Z. Li, R. Zhang, H. Wen, B. Gao, G. Chen, P. Gao, M.M.F. Yuen, and C.P. Wong, Adv. Funct. Mater. 21, 4582 (2011).

    Article  Google Scholar 

  4. C. Yang, M.M.F. Yuen, B. Gao, Y. Ma, and C.P. Wong, J. Electron. Mater. 40, 78 (2010).

    Article  Google Scholar 

  5. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).

    Article  Google Scholar 

  6. K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, and A. Javey, Nat. Mater. 9, 821 (2010).

    Article  Google Scholar 

  7. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater. 26, 1336 (2014).

    Article  Google Scholar 

  8. Y. Wei, S. Chen, Y. Lin, Z. Yang, and L. Liu, J. Mater. Chem. C 3, 9594 (2015).

    Article  Google Scholar 

  9. Y. Wei, S. Chen, F. Li, Y. Lin, Y. Zhang, L. Liu, and A.C.S. Appl, Mater. Interfaces 7, 14182 (2015).

    Article  Google Scholar 

  10. Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, and L.A. Reichertz, Nat. Mater. 8, 648 (2009).

    Article  Google Scholar 

  11. L. Hu, H. Wu, F. La Mantia, Y. Yang, and Y. Cui, ACS Nano 4, 5843 (2010).

    Article  Google Scholar 

  12. Z. Li, R. Zhang, K.S. Moon, Y. Liu, K. Hansen, T. Le, and C.P. Wong, Adv. Funct. Mater. 23, 1459 (2013).

    Article  Google Scholar 

  13. M.N. Collins, J. Punch, R. Coyle, M. Reid, R. Popowich, P. Read, and D. Fleming, IEEE Trans. Comput. Packag. Manuf. 1, 1594 (2011).

    Google Scholar 

  14. R. Coyle, J. Osenbach, M.N. Collins, H. McCormick, P. Read, D. Fleming, R. Popowich, J. Punch, M. Reid, and S. Kummerl, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1583 (2011).

    Article  Google Scholar 

  15. K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi, and S. Baik, Nat. Nanotechnol. 5, 853 (2012).

    Article  Google Scholar 

  16. R. Ma, S. Kwon, Q. Zheng, H.Y. Kwon, J.I. Kim, H.R. Choi, and S. Baik, Adv. Mater. 24, 3344 (2012).

    Article  Google Scholar 

  17. Y. Wei, S. Chen, F. Li, K. Liu, and L. Liu, Compos. Part A 73, 195 (2015).

    Article  Google Scholar 

  18. C. Wang, X. Li, B. Du, P. Li, X. Lai, and Y. Niu, Colloid Polym. Sci. 292, 579 (2013).

    Article  Google Scholar 

  19. J. Xu, X. Rong, T. Chi, M. Wang, Y. Wang, D. Yang, and F. Qiu, J. Appl. Polym. Sci. 130, 3142 (2013).

    Article  Google Scholar 

  20. H. Gao, L. Liu, Y.F. Luo, D.M. Jia, F. Wang, and K.H. Liu, Int. J. Polym. Mater. 60, 409 (2011).

    Article  Google Scholar 

  21. Z. Li, K. Hansen, Y. Yao, Y. Ma, K.S. Moon, and C.P. Wong, J. Mater. Chem. C 1, 4368 (2013).

    Article  Google Scholar 

  22. Y. Yagci, S. Jockusch, and N.J. Turro, Macromolecules 43, 6245 (2010).

    Article  Google Scholar 

  23. R. Giardi, S. Porro, A. Chiolerio, E. Celasco, and M. Sangermano, J. Mater. Sci. 48, 1249 (2012).

    Article  Google Scholar 

  24. L.N. Ho and H. Nishikawa, J. Electron. Mater. 41, 2527 (2012).

    Article  Google Scholar 

  25. H. Gao, L. Liu, K. Liu, Y. Luo, D. Jia, and J. Lu, J. Mater. Sci. 23, 22 (2011).

    Google Scholar 

  26. K.C. Wu and J.W. Halloran, J. Mater. Sci. 40, 71 (2005).

    Article  Google Scholar 

  27. Z. Li, T. Le, Z. Wu, Y. Yao, L. Li, M. Tentzeris, K.S. Moon, and C.P. Wong, Adv. Funct. Mater. 25, 464 (2015).

    Article  Google Scholar 

  28. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys. 72, 953 (1992).

    Article  Google Scholar 

  29. K. Liu, L. Liu, Y. Luo, and D. Jia, J. Mater. Chem. 22, 20342 (2012).

    Article  Google Scholar 

  30. K. Dai, G.P. Zhu, Z.L. Liu, Q.Z. Liu, and L.H. Lu, New Chem. Mater. 39, 38 (2011).

    Google Scholar 

  31. C.P. Hsu, R.H. Guo, C.C. Hua, C.L. Shih, W.T. Chen, and T.I. Chang, J. Polym. Res. 20, 1 (2013).

    Article  Google Scholar 

  32. T.A. Nguty and N.N. Ekere, Rheol. Acta 39, 607 (2000).

    Article  Google Scholar 

  33. R. Zhang, W. Lin, K.S. Moon, and C.P. Wong, ACS Appl. Mater. Interfaces 2, 2637 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Chen, S., Wei, Y. et al. Facile, Low-Cost, UV-Curing Approach to Prepare Highly Conductive Composites for Flexible Electronics Applications. J. Electron. Mater. 45, 3603–3611 (2016). https://doi.org/10.1007/s11664-016-4525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4525-2

Keywords

Navigation