Skip to main content

Advertisement

Log in

Single step rubbing for highly efficient fabrication of flexible transparent conductive films featured with micro conductive channels on Polyvinylchloride surface

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, we proposed and developed a “single step rubbing method” to fabricate flexible transparent conductive films with highly efficiency, and such films are featured with micro conductive channels embedded in Polyvinylchloride matrix. Based on the intrinsic wear properties of Polyvinylchloride films and intrinsic self-lubrication property of graphite, micro conductive channels and flexible transparent conductive films could be obtained through a convenient rubbing process of commercial nano graphite raw materials. It is a highly efficient technology as the progress consumes only several minutes from raw materials to final products and its benefits in economic, environment and energy aspects. Films with surface resistivity from 35 to 500 kΩ sq−1, and optical transparency from 80 to 95 % at 550 nm can be obtained. The surface stability of the films is strong enough to protect them from aging under destructive surface treatments. Finally, the samples show strain sensitivity with high stability, which means that the samples can also be applied as transparent strain sensing films. Not only the fabrication method but also the TCFs/strain sensing films are very promising to be applied in flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Ellmer, Nat. Photon. 6, 809 (2012)

    Article  Google Scholar 

  2. D.V.R. Kumar, K. Woo, J. Moon, Nanoscale 7, 17195 (2015)

    Article  Google Scholar 

  3. P. Paletti, R. Pawar, G. Ulisse, F. Brunetti, G. Iannaccone, G. Fiori, 2D Mater 2, 045006 (2015)

    Article  Google Scholar 

  4. M. Itkis, A. Peller, X. Tian, E. Bekyarova, R. Haddon, Acc. Chem. Res. 48, 2270 (2015)

    Article  Google Scholar 

  5. J. Du, S. Pei, L. Ma, H. Cheng, Adv. Mater. 26, 1958 (2014)

    Article  Google Scholar 

  6. Y. Zhang, Z. Li, H. Li, J. Gao, J. Zhang, Y. Zeng, J. Mater. Sci.: Mater. Electron. 25, 2692 (2014)

    Google Scholar 

  7. Y. Zhong, Z. Tian, G.P. Simon, D. Li, Mater. Today 18, 73 (2015)

    Article  Google Scholar 

  8. Q. Zheng, Z. Li, J. Yang, J. Kim, Prog. Mater Sci. 64, 200 (2014)

    Article  Google Scholar 

  9. J.N. Coleman, Acc. Chem. Res. 46, 14 (2013)

    Article  Google Scholar 

  10. S. Bae, S. Kim, D. Shin, J. Ahn, B. Hong, Phys. Scr. T146, 014024 (2012)

    Article  Google Scholar 

  11. T.H. Bointon, G.F. Jones, A. De Sanctis, R. Hill-Pearce, M.F. Craciun, S. Russo, Sci. Rep. 5, 16464 (2015)

    Article  Google Scholar 

  12. M.M. Menamparambath, A.C. Muhammed, K.K. Hee, Y. Daejin, R. Jongwook, P.H. Cheol, K. Chan, C. Jae-Young, B. Seunghyun, Sci. Rep. 5, 16371 (2015)

    Article  Google Scholar 

  13. W. Kim, S. Lee, D. Lee, I. Park, J. Bae, T. Lee, J. Kim, J. Park, Y. Cho, C. Cho, Sci. Rep. 5, 10715 (2015)

    Article  Google Scholar 

  14. Z. Li, H. Xie, D. Jun, Y. Wang, X. Wang, J. Li, J. Mater. Sci.: Mater. Electron. 26, 6532 (2015)

    Google Scholar 

  15. L. Li, T. Zhang, Y. Liu, C. Zhu, J. Mater. Sci.: Mater. Electron. 27, 3193 (2016)

    Google Scholar 

  16. D. Kim, H. Kim, K. Seo, K. Kim, T. Kim, H. Kim, Sci. Rep. 5, 16838 (2015)

    Article  Google Scholar 

  17. M. Mohl, A. Dombovari, R. Vajtai, P. Ajayan, K. Kordas, Sci. Rep. 5, 13710 (2015)

    Article  Google Scholar 

  18. L. Jiang, X. Lu, X. Zheng, J. Mater. Sci.: Mater. Electron. 25, 174 (2014)

    Google Scholar 

  19. S. Jiang, Y. Zeng, W. Zhou, X. Miao, Y. Yu, Sci. Rep. 6, 19313 (2016)

    Article  Google Scholar 

  20. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, S. Liu, Sci. Rep. 3, 2697 (2013)

    Google Scholar 

  21. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, J. He, J. Yi, W. Liu, Appl. Phys. Lett. 103, 011601 (2013)

    Article  Google Scholar 

  22. J.K. Wassei, R.B. Kaner, Mater. Today 13, 52 (2010)

    Article  Google Scholar 

  23. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Kim, Y. Song, Y. Kim, K. Kim, B. Ozyilmaz, J. Ahn, B. Hong, S. Iijima, Nat. Nanotechnol. 5, 579 (2010)

    Article  Google Scholar 

  24. Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, Y. Zhang, Q. Zhang, H. Zhao, Appl. Phys. Lett. 101, 023119 (2012)

    Article  Google Scholar 

  25. Y. Yu, S. Jiang, G. Zhang, W. Zhou, X. Miao, Y. Zeng, J. Wang, J. He, L. Zhang, Appl. Phys. Lett. 101, 073113 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Undergraduates’ Science and Technology Innovation Foundation of Huazhong University of Science and Technology (No. 2016035). We acknowledge Analytical and Testing Center of Huazhong University of Science and Technology, for testing our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Li, H. Single step rubbing for highly efficient fabrication of flexible transparent conductive films featured with micro conductive channels on Polyvinylchloride surface. J Mater Sci: Mater Electron 27, 11917–11924 (2016). https://doi.org/10.1007/s10854-016-5337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5337-0

Keywords

Navigation