Skip to main content
Log in

HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures (n/p VHg or p/n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gravrand, L. Mollard, O. Boulade, V. Moreau, E. Sanson, and G. Destefanis, J. Electron. Mater. 41, 2686 (2012). doi:10.1007/s11664-012-2181-8.

    Article  Google Scholar 

  2. O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007). doi:10.1007/s11664-007-0151-3.

    Article  Google Scholar 

  3. O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009). doi:10.1007/s11664-009-0795-2.

    Article  Google Scholar 

  4. O. Gravrand, G. Destefanis, S. Bisotto, N. Baier, J. Rothman, and L. Mollard, J. Electron. Mater. 42, 3349 (2013). doi:10.1007/s11664-013-2803-9.

    Article  Google Scholar 

  5. J. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. Piquette, T. Sprafke, W. Tennant, M. Zandian, and J. Zino, Proceedings of SPIE (2008), p. 70210H. doi:10.1117/ 12.790382.

  6. B. Fièque, L. Martineau, E. Sanson, P. Chorier, O. Boulade, V. Moreau, and H. Geoffray, Proceedings of SPIE, 8176 (2011), pp. 81761I–81761I–13. doi:10.1117/12.898987.

  7. S. Guieu, P. Feautrier, G. Zins, J.-B. Le Bouquin, E. Stadler, P. Kern, and P. Bourget, Proceedings of SPIE (2014), p. 91461N. doi:10.1117/12.2056334.

  8. C. Cervera, O. Gravrand, J.P. Zanatta, C. Lobre, J.L. Santailler, O. Boulade, and V. Moreau, J. Electron. Mater. (2016, under review).

  9. A. Delannoy, B. Fièque, P. Chorier, and C. Riuné, SPIE (2015), p. 96390R. doi:10.1117/12.2197239.

  10. J.W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E.C. Piquette, T. Sprafke, W.E. Tennant, M. Zandian, and J. Zino, Proceedings of SPIE (2008), p. 7021. doi:10.1117/12.790382.

  11. G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, J. Electron. Mater. 36, 963 (2007). doi:10.1007/s11664-007-0147-z.

    Article  Google Scholar 

  12. E. De Borniol, J. Rothman, F. Salveti, and P. Feautrier, ICSO2014 (Tenerife, 2014), p. 65468.

  13. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008). doi:10.1007/s11664-008-0426-3.

    Article  Google Scholar 

  14. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  Google Scholar 

  15. C. Cervera, N. Baier, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, and V. Moreau, Proceedings of SPIE (2015), p. 945129. doi:10.1117/12.2179216.

  16. N. Baier, C. Cervera, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, and V. Moreau, J. Electron. Mater. 44, 3144 (2015). doi:10.1007/s11664-015-3851-0.

    Article  Google Scholar 

  17. P.-E. Crouzet, L. Duvet, F. de Wit, T. Beaufort, S. Blommaert, B. Butler, G. Van Duinkerken, J. ter Haar, J. Heijnen, K. van der Luijt, and H. Smit, SPIE (2015), p. 96390X. doi:10.1117/12.2208268.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gravrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravrand, O., Rothman, J., Cervera, C. et al. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements. J. Electron. Mater. 45, 4532–4541 (2016). https://doi.org/10.1007/s11664-016-4516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4516-3

Keywords

Navigation