Skip to main content
Log in

Comparative Dielectric and Ferroelectric Characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3–0.5CaCu3Ti4O12 Electroceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric and ferroelectric characteristics of Bi0.5Na0.5TiO3 (BNT), CaCu3Ti4O12 (CCTO), and 0.5Bi0.5Na0.5TiO3–0.5CaCu3Ti4O12 (BNT/CCTO) ceramics are compared. X-ray diffraction patterns confirmed the formation of single phase of all the ceramics after sintering at 950°C for 15 h. Scanning electron microscopy images of the sintered ceramics reveal average grain sizes in the range from 200 nm to 2.5 μm. Energy-dispersive x-ray mapping and x-ray photoelectron spectroscopy show the presence of the elements Bi, Na, Ca, Cu, Ti, and O with uniform distribution in the ceramics. BNT/CCTO exhibits high dielectric constant (ε r ∼ 6.9 × 104) compared with BNT (ε r ∼ 0.13 × 104) and CCTO (ε r ∼ 1.68 × 104) ceramics at 1 kHz and 503 K. The high dielectric constant of BNT/CCTO compared with BNT and CCTO is associated with a major contribution from grain boundaries, as confirmed by impedance and modulus analyses. The PE hysteresis loop of all the ceramics measured at room temperature and 50°C exhibited typical ferroelectric nature. The remanent polarization (P r) of BNT (1.58 μC/cm2) and CCTO (0.654 μC/cm2) ceramics are higher than that of BNT/CCTO (0.267 μC/cm2) ceramic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, J. Electron. Mater. 44, 1088 (2015).

    Article  Google Scholar 

  2. E.J.J. Mallmann, M.A.S. Silva, A.S.B. Sombra, M.A. Botelho, S.E. Mazzetto, A.S.D. Menezes, A.F.L. Almeida, and P.B.A. Fechine, J. Electron. Mater. 44, 295 (2015).

    Article  Google Scholar 

  3. M.H. Wang, B. Zhang, and F. Zhou, J. Electron. Mater. 43, 2607 (2014).

    Article  Google Scholar 

  4. L. Singh, U.S. Rai, K.D. Mandal, and N.B. Singh, Prog. Cryst. Growth Charact. Mater. 60, 15 (2014).

    Article  Google Scholar 

  5. L. Singh, U.S. Rai, K.D. Mandal, B.C. Sin, S.I. Lee, and Y. Lee, Ceram. Int. 40, 10073 (2014).

    Article  Google Scholar 

  6. I. Norezan, A.K. Yahya, and M.K. Talari, J. Mater. Sci. Technol. 28, 1137 (2012).

    Article  Google Scholar 

  7. H. Yu, H. Liu, H. Hao, D. Luo, and M. Cao, Mater. Lett. 62, 1353 (2008).

    Article  Google Scholar 

  8. C. Warangkanagool and G. Rujijanagul, Nanoscale Res. Lett. 7, 68 (2012).

    Article  Google Scholar 

  9. L. Fang, M. Shen, and Z. Li, J. Appl. Phys. 100, 104101 (2006).

    Article  Google Scholar 

  10. D. Lin, Q. Zheng, C. Xu, and K.W. Kwok, Appl. Phys. A 93, 549 (2008).

    Article  Google Scholar 

  11. B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, and N.C. Batista, Appl. Phys. A 109, 715 (2012).

    Article  Google Scholar 

  12. T. Takenaka, K.I. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  Google Scholar 

  13. W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, and K. Reichmann, J. Eur. Ceram. Soc. 30, 1827 (2010).

    Article  Google Scholar 

  14. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  Google Scholar 

  15. T. Takenaka, K.O. Sakata, and K.O. Toda, Ferroelectrics 106, 375 (1990).

    Article  Google Scholar 

  16. T. Wada, K. Toyoike, Y. Imanaka, and Y. Matsuo, Jpn. J. Appl. Phys. 40, 5703 (2001).

    Article  Google Scholar 

  17. A.R. Darvishi, W.L. Li, O.S. Bishe, L.D. Wang, Y. Zhao, S.Q. Zhang, and W.D. Fei, J. Alloys Compd. 514, 179 (2012).

    Article  Google Scholar 

  18. L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, and Y. Lee, RSC Adv. 4, 52770 (2014).

    Article  Google Scholar 

  19. L. Singh, U.S. Rai, and K.D. Mandal, Mater. Res. Bull. 48, 2117 (2013).

    Article  Google Scholar 

  20. J.K. Reddy, B. Srinivas, V.D. Kumari, and M. Subrahmanyam, ChemCatChem 1, 492 (2009).

    Article  Google Scholar 

  21. Y. Lee, T. Watanabe, T. Takata, J.N. Kondo, M. Hara, M. Yoshimura, and K. Domen, Chem. Mater. 17, 2422 (2005).

    Article  Google Scholar 

  22. Z.H. Sun, C.H. Kim, H.B. Moon, Y.H. Jang, and J.H. Cho, J. Korean Phys. Soc. 54, 881 (2009).

    Article  Google Scholar 

  23. L. Singh, I.W. Kim, W.S. Woo, B.C. Sin, H. Lee, and Y. Lee, Solid State Sci. 43, 35 (2015).

    Article  Google Scholar 

  24. C.M. Guinness, J.E. Downes, P. Sheridan, P.A. Glans, K.E. Smith, W. Si, and P.D. Johnson, Phys. Rev. B 71, 195111 (2005).

    Article  Google Scholar 

  25. E.R. Moore, P. Ferrari, D.E.D. Droguett, D. Lederman, and J.T. Evans, J. Appl. Phys. 111, 014108 (2012).

    Article  Google Scholar 

  26. Y.J. Wu, S.H. Su, S.Y. Wu, and X.M. Chen, Ceram. Int. 37, 1979 (2011).

    Article  Google Scholar 

  27. A.F.L. Almeida, P.B.A. Fechine, J.C. Góes, M.A. Valente, M.A.R. Miranda, and A.S.B. Sombra, Mater. Sci. Eng. 111, 113 (2004).

    Article  Google Scholar 

  28. W.X. Yuan and S.K. Hark, J. Eur. Ceram. Soc. 32, 465 (2012).

    Article  Google Scholar 

  29. Y. Yan, L. Jin, L. Feng, and G. Cao, Mater. Sci. Eng. 130, 146 (2006).

    Article  Google Scholar 

  30. L. Singh, U.S. Rai, and K.D. Mandal, J. Alloys Compd. 555, 176 (2013).

    Article  Google Scholar 

  31. H.E. Kim, S.M. Choi, S.Y. Lee, Y.W. Hong, and S.I. Yoo, Electron. Mater. Lett. 9, 325 (2013).

    Article  Google Scholar 

  32. W. Li and R.W. Schwartz, Phys. Rev. B 75, 012104 (2007).

    Article  Google Scholar 

  33. J.H. Park, J.S. Bae, B.C. Choi, J.H. Jeong, H.J. Seo, B.K. Moon, and I.W. Kim, Appl. Phys. A 79, 1879 (2004).

    Article  Google Scholar 

  34. H. Borkar, V.N. Singh, B.P. Singh, M. Tomar, V. Gupta, and A. Kumar, RSC Adv. 4, 22840 (2014).

    Article  Google Scholar 

  35. L. Singh, U.S. Rai, K.D. Mandal, and A.K. Rai, Appl. Phys. A 112, 891 (2013).

    Article  Google Scholar 

  36. L. Fang, M. Shen, and D. Yao, Appl. Phys. A 80, 1763 (2005).

    Article  Google Scholar 

  37. S.I.R. Costa, M. Li, J.R. Frade, and D.C. Sinclair, RSC Adv. 3, 7030 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation (NRF-2015R1D1A3A01019167 to Y. Lee and NRF-2015R1D1A4A01019630 to L. Singh) and the Priority Research Centers Program (NRF-2009-0093818) funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Yadava, S., Sin, B. . et al. Comparative Dielectric and Ferroelectric Characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3–0.5CaCu3Ti4O12 Electroceramics. J. Electron. Mater. 45, 2662–2672 (2016). https://doi.org/10.1007/s11664-016-4340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4340-9

Keywords

Navigation