Skip to main content
Log in

Quantitative Analysis of Porosity and Transport Properties by FIB-SEM 3D Imaging of a Solder Based Sintered Silver for a New Microelectronic Component

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As part of development of a new assembly technology to achieve bonding for an innovative silicon carbide (SiC) power device used in harsh environments, the aim of this study is to compare two silver sintering profiles and then to define the best candidate for die attach material for this new component. To achieve this goal, the solder joints have been characterized in terms of porosity by determination of the morphological characteristics of the material heterogeneities and estimating their thermal and electrical transport properties. The three dimensional (3D) microstructure of sintered silver samples has been reconstructed using a focused ion beam scanning electron microscope (FIB-SEM) tomography technique. The sample preparation and the experimental milling and imaging parameters have been optimized in order to obtain a high quality of 3D reconstruction. Volume fractions and volumetric connectivity of the individual phases (silver and voids) have been determined. Effective thermal and electrical conductivities of the samples and the tortuosity of the silver phase have been also evaluated by solving the diffusive transport equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Siow, J. Electron. Mater. (2014). doi:10.1007/s11664-013-2967-3.

    Google Scholar 

  2. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. (2010). doi:10.1063/1.3502604.

    Google Scholar 

  3. S. Wang, H. Ji, M. Li, and C. Wang, Mater. Lett. 85, 61 (2012).

  4. R.L. Eadie, G.C. Weatherly, and K.T. Aust, Acta Metall. Mater. 26, 759 (1978).

  5. S. Fu, Y. Mei, G.Q. Lu, X. Li, G. Chen, and X. Chen, Mater. Lett. 128, 42 (2014).

  6. D.J. Green, O. Guillon, and J. Rödel, J. Eur. Ceram. Soc. (2008). doi: 10.1016/j.jeurceramsoc.2007.12.012.

  7. E.A. Wargo, T. Kotaka, Y. Tabuchi, and E.C. Kumbur, J. Power Sources (2013). doi: 10.1016/j.jpowsour.2013.04.153.

  8. A. Madra, N. El Hajj, and M. Benzeggagh, Compos. Sci. Technol. (2014). doi: 10.1016/j.compscitech.2014.02.009.

  9. L. Vergara, R. Miralles, J. Gosabez, F.J. Juanes, L.G. Ullate, J.J. Anaya, M.G. Hernandez, and M.A.G. Izquierdo, NDT E Int. 34 (2001).

  10. S. Maalej, Z. Lafhaj, and M. Bouassida, Mech. Res. Commun. (2013). doi: 10.1016/j.mechrescom.2013.03.002.

  11. W. Shen, L. Feng, A. Lei, Z. Liu, and Y. Chen, Ceram Int. (2014). doi: 10.1016/j.ceramint.2013.07.034.

  12. S.B. Rane, T. Seth, G.J. Phatak, D.P. Amalnerkar, and B.K. Das, Mater. Lett. 57, 3096 (2003). doi: 10.1016/S0167-577X(03)00003-X.

  13. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, J. Mater. Process. Technol. (2015). doi: 10.1016/j.jmatprotec.2014.08.002.

  14. A. Dubnika and V. Zalite, Ceram. Int. 40 (2014).

  15. T.S. Yeoh, N.A. Ives, N. Presser, G.W. Stupian, M.S. Leung, J.L. McCollum, and F.W. Hawley, J. Vac. Sci. Technol., B 25, 3 (2007).

    Article  Google Scholar 

  16. L. Holzer, B. Muench, M. Wegmann, P.H. Gasser, and R.J. Flatt, J. Am. Ceram. Soc. 89, 2577 (2006).

  17. M.D. Abramoff, P.J. Magalhaes, and S.J. Ram, Biophotonics Int. 11, 7 (2004).

    Google Scholar 

  18. G. Desbois, J.L. Urai, and P.A. Kukla, Earth Discuss. 4 1, 19 (2009).

  19. L. Tomutsa and V. Radmilovic (Publishing eScholarship University of California, 2003). http://escolarship.org/uc/item/4045j24n [Accessed 24/11/2015].

  20. E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, and M. Thuvander, Mater. Charact. 59, 877 (2008).

  21. G. Knott, H. Marchman, D. Wall, and B. Lich, J. Neurosci. 28, 12 (2008).

    Article  Google Scholar 

  22. L. Holzer, F. Indutny, P. Gasser, B. Munch, and M. Wegman, J. Microsc. 216, 84 (2004).

  23. S. Cao, W. Tirry, W. Van Den Broek, and D. Schryvers, J. Microsc. 223, 61 (2009).

  24. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons, Scripta Mater. 55, 1 (2006).

    Article  Google Scholar 

  25. S.S. Ray, Polymer. 51, 3966 (2010)

  26. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Alder, and S.A. Barnett, Nat. Mater. 5, 541 (2006).

  27. J.R. Wilson, A.T. Duong, M. Gameiro, H.-Y. Chen, D.R. Mumm, and S.A. Barnett, Electrochem. Commun. 11, 1052 (2009)

  28. N. Vivet, S. Chupin, E. Estrade, T. Piquero, P.L. Pommier, D. Rochais, and E. Bruneton, J. Power Sources 196, 7541 (2011).

  29. N. Vivet, S. Chupin, E. Estrade, A. Richard, S. Bonnamy, D. Rochais, and E. Bruneton, J. Power Sources 196 (2011).

  30. P.R. Shearing, J. Golbert, R.J. Chater, and N.P. Brandon, Chem. Eng. Sci. 64, 3928 (2009).

  31. H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, and H. Yoshida, J. Power Sources 195, 955 (2010).

  32. J.R. Wilson, J.S. Cronin, S.A. Barnett, and S.J. Harris, J. Power Sources 196, 3443 (2011).

  33. P.R. Shearing, L.E. Howard, P.S. Jorgensen, N.P. Brandon, and S.J. Harris, Electrochem. Commun. 12, 374 (2010).

  34. M. Ender, J. Joos, T. Carraro, and E. Ivers-Tiffée, Electrochem. Commun. 13, 166 (2011).

  35. F. Altmann, J. Beyersdorfer, J. Schischka, M. Krause, G. Franz, and L. Kwakman, ISTFA: Conf. Proc. 38th Int. Symp. For Testing and Failure Analysis, Vol. 39 (2012).

  36. T. Hrncir and L. Hladik, ISTFA: Conf. Proc. 39th Int. Symp. For Testing and Failure Analysis, vol. 27 (2013).

  37. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectronics Reliab. 52, 3 (2012).

    Article  Google Scholar 

  38. H.A.S. Shin, B.J. Kim, J.H. Kim, S.H. Hwang, A.S. Budiamn, H.Y. Son, K.Y. Byun, N. Tamura, M. Kunz, D.I. Kim, and Y.C. Joo, J. Electron. Mater. 41, 4 (2012).

    Google Scholar 

  39. R. Spolenak, C.A. Volkert, K. Takahashi, S. Fiorillo, J. Miner, and W.L. Brown, MRS Proceedings 594 (1999).

  40. A.S. Budiman, P.R. Besser, C.S. Hau-Riege, A. Marathe, Y.C. Joo, N. Tamura, J.R. Patel, and W.D. Nix, J. Electron. Mater. 38, 3 (2009).

    Article  Google Scholar 

  41. A.S. Budiman, C.S. Hau-Riege, W.C. Baek, C. Lor, A. Huang, H.S. Kim, G. Neubauer, J. Pak, P.R. Besse, and W.D. Nix, J. Electron. Mater. 39, 11 (2010).

    Article  Google Scholar 

  42. B.C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R.S. Celestre, H.A. Padmore, R. Spolenak, W.L. Brown, B.W. Batterman, and J.R. Patel, Appl. Phys. Lett. 81, 4168 (2002).

  43. A.S. Budiman, N. Li, Q. Wei, J.K. Baldwin, J. Xiong, H. Luo, D. Trugman, Q.X. Jia, N. Tamura, M. Kunz, K. Chen, and A. Misra, Thin Solid Films 519, 13 (2011).

    Article  Google Scholar 

  44. M.J. Burek, A.S. Budiman, Z.B. Jahed, N. Tamura, M. Kunz, S. Jin, S. Min, J. Han, G. Lee, C. Zamecnik, and T.Y. Tsui, Mater. Sci. Eng. A. 528, 18 (2011).

  45. Y. Kim, A.S. Budiman, J.K. Baldwin, N.A. Mara, A. Misra, and S.M. Han, J. Electron. Mater. 41 (2012).

  46. A.S. Budiman, S.M. Han, N. Li, Q.M. Wei, P. Dickerson, N. Tamura, M. Kunz, and A. Misra, J. Mater. Research 27, 3 (2012).

    Article  Google Scholar 

  47. S. Canovicl, T. Jonsson, M. Halvarsson, and J. Physics, Conference Series. 126, 012054 (2008).

    Article  Google Scholar 

  48. P. Hovington, D. Drouin, and R. Gauvin, Scanning 19 (1997).

  49. High performance 3D visualization software, http://www.vsg3d.com [Accessed 24/11/2015]

  50. P.S. Jorgensen, K.V. Hansen, R. Larsen, and J.R. Bowen, Ultramicroscopy 110, 3 (2010).

    Article  Google Scholar 

  51. J. Hoshen and R. Kopelman, Phys. Rev. B. 1, 14 (1976).

    Google Scholar 

  52. Y. Nakashima and S. Kamiya, J. Nucl. Sci. Technol. 44, 9 (2007).

    Article  Google Scholar 

  53. D. Rochais, G. Le Meur, V. Basini, and G. Domingues, Nucl. Eng. Des. 238, 2839 (2008).

  54. J.M. Ziman, Electrons and Phonons, Chapter␣XI (London: Oxford University Press, 1960).

    Google Scholar 

  55. Z. Zhang (PhD Dissertation, Virginia Tech, 2005).

  56. J. Guofeng and J. Yin, IEEE Trans. Adv. Packag. 30 (2007)

  57. M. Kishimoto, H. Iwai, M. Saito, and H. Hoshida, 216th ECS Meeting, SOFC XI (Vienna, 2009).

  58. J.M. Zalc, S.C. Reyes, and E. Iglesia, Chem. Eng. Sci. 59, 2947 (2004).

Download references

Acknowledgements

This work is part of a collaborative research program with the European consortium SICRATES and is funded by Cluster EURIPIDES (European Smart Electronic Systems). We gratefully acknowledge technical support by ST Microelectronics in Tours, and offer special thanks to Franck Dosseul and Alexandre Seigneurin. We also thank Laurent Guilbaud and Dominique Leduc from Thales Microelectronics for providing the samples. The authors would like to thank the CERTeM 2020, owner of the FIB-SEM equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Rmili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rmili, W., Vivet, N., Chupin, S. et al. Quantitative Analysis of Porosity and Transport Properties by FIB-SEM 3D Imaging of a Solder Based Sintered Silver for a New Microelectronic Component. J. Electron. Mater. 45, 2242–2251 (2016). https://doi.org/10.1007/s11664-015-4288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4288-1

Keywords

Navigation