Skip to main content
Log in

Reduced graphene–cadmium sulfide hybrid nanopowders: solvothermal synthesis and enhanced electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene–cadmium sulfide nanocomposite (G–CdS) was prepared by one pot solvothermal route. Graphite oxide (GO) was well dispersed in dimethyl sulfoxide (DMSO) solution of ions Cd2+, where DMSO acted as a sulphide source as well as reducing agent, resulting in the formation of G–CdS nanocomposite and simultaneous reduction of GO to graphene nanosheets (GNs). The size of CdS nanoparticles (NPs) in G–CdS was around 10 nm, and the large 2D flexible atom-thin layer of graphene made it easier to control the distribution of CdS NPs. The electrochemical performances of G–CdS nanocomposite were investigated by cyclic voltammetry and charge/discharge techniques. It showed that the G–CdS nanocomposite had a high electrochemical activity, durability, and stability. And the electronic conductivity of nanocomposite was improved and the stability of electrode was enhanced because of the introduction of GNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  2. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Adv. Mater. 22, 347–351 (2010)

    Article  Google Scholar 

  3. B.E. Conway, V. Birssand, J. Wojtowicz, J. Power Sources 66, 1–14 (1997)

    Article  Google Scholar 

  4. J.K. Chang, C.T. Lin, W.T. Tsai, Electrochem. Commun. 6, 666–671 (2004)

    Article  Google Scholar 

  5. M. Toupin, D. Belanger, I.R. Hill, D. Quinn, J. Power Sources 140, 203–210 (2005)

    Article  Google Scholar 

  6. E. Naudin, H.A. Ho, S. Branchaud, L. Breau, D. Belanger, J. Phys. Chem. B 106, 10585–10593 (2002)

    Article  Google Scholar 

  7. K.R. Prasad, K. Koga, N. Miura, Chem. Mater. 16, 1845–1847 (2004)

    Article  Google Scholar 

  8. P. Gao, J. Liu, T. Zhang, J. Hazard. Mater. 229, 209–216 (2012)

    Article  Google Scholar 

  9. K. Zhang, X. Liu, Y. Sun, J. Mater. Chem. 46, 6975–6980 (2011)

    Article  Google Scholar 

  10. V.C. Moore, M.S. Strano, E.H. Haroz, Nano Lett. 3, 1379–1382 (2003)

    Article  Google Scholar 

  11. J.S. Jie, W.J. Zhang, Y. Jiang, Nano Lett. 6, 1887–1892 (2006)

    Article  Google Scholar 

  12. Q. Li, B. Guo, J. Yu, J. Am. Chem. Soc. 133, 10878–10884 (2011)

    Article  Google Scholar 

  13. A.K. Geim, Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  14. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.L. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197–200 (2005)

    Article  Google Scholar 

  16. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  17. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  18. J. Wu, W. Pisula, K. Mullen, Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  19. L. David, R. Bhandavat, G. Singh, ACS Nano 8, 1759–1770 (2014)

    Article  Google Scholar 

  20. Q. Pan, J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, RSC Adv. 3, 3899–3906 (2013)

    Article  Google Scholar 

  21. J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Nano Energy 2, 49–56 (2013)

    Article  Google Scholar 

  22. L. Fei, Q. Lin, B. Yuan, G. Chen, P. Xie, Y. Li, Y. Xu, S. Deng, S. Smirnov, H. Luo, ACS Appl. Mater. Interfaces 5, 5330–5335 (2013)

    Article  Google Scholar 

  23. Z. Zhang, C. Zhou, L. Huang, X. Wang, Y. Qu, Y. Lai, J. Li, Electrochim. Acta 114, 88–94 (2013)

    Article  Google Scholar 

  24. G. Nie, L. Zhang, X. Lu, X. Bian, W. Sun, C. Wang, Dalton Trans. 42, 14006–14013 (2013)

    Article  Google Scholar 

  25. H.C. Tao, X.L. Yang, L.L. Zhang, S.B. Ni, J. Phys. Chem. Solids 75(11), 1205–1209 (2014)

    Article  Google Scholar 

  26. K. Wang, Q. Liu, Q.M. Guan, J. Wu, H.N. Li, J.J. Yan, Biosens. Bioelectron. 26(5), 2252–2257 (2011)

    Article  Google Scholar 

  27. X.Q. An, X.L. Yu, J.C. Yu, G.J. Zhang, J. Mater. Chem. A 1, 5158–5164 (2013)

    Article  Google Scholar 

  28. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  29. J.F. Shen, Y.Z. Hu, C. Li, C. Qin, M.X. Ye, Small 5, 82–85 (2009)

    Article  Google Scholar 

  30. L.L. Ren, S. Huang, W. Fan, T.X. Liu, Appl. Surf. Sci. 258, 1132–1138 (2011)

    Article  Google Scholar 

  31. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities in China (Grant No. 2013XK07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yabo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhu, Y., Xing, Z. et al. Reduced graphene–cadmium sulfide hybrid nanopowders: solvothermal synthesis and enhanced electrochemical performance. J Mater Sci: Mater Electron 26, 5697–5702 (2015). https://doi.org/10.1007/s10854-015-3124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3124-y

Keywords

Navigation