Skip to main content
Log in

Microstructures and Microwave Dielectric Properties of Low-Temperature Fired Ca0.8Sr0.2TiO3-Li0.5Sm0.5TiO3 Ceramics with Bi2O3-2B2O3 Addition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructures and microwave dielectric properties of xCa0.8Sr0.2TiO3-(1−x) Li0.5Sm0.5TiO3 (x = 0.25, 0.28, 0.3, 0.35 and 0.4) ceramics with about 20 wt.% Bi2O3-2B2O3 (BB) addition were investigated. All the composite ceramics prepared using the conventional mixed oxide route consisted of a primarily orthorhombic perovskite xCa0.8Sr0.2TiO3-(1−x)Li0.5Sm0.5TiO3 solid-solution phase and minor secondary phases ascribed to LiBO2 and BiB3O6. It was found that the addition of 20 wt.% Bi2O3-2B2O3 in xCa0.8Sr0.2TiO3-(1−x) Li0.5Sm0.5TiO3 (CSLSTx) phases decreased the optimal sintering temperature range to 1025–1050°C. In the optimal sintering temperature range, the highest values of bulk density (ρ), dielectric constant (ε r) and the product (Q.f) of quality factor (Q) and frequency (f) for the ceramics were obtained. With x increasing from 0.25 to 0.40, ε r increased from 94.9 to 116.6 and τ f from −14.76 ppm/°C to 100.2 ppm/°C, while Q.f value slightly increased from 1725 GHz to 1745 GHz and then decreased from 1745 GHz to 1541 GHz. For the 100 CSLSTx-20BBO ceramics sintered at 1025°C, a near-zero τ f ceramic with ε r of 100 and Q.f value of 1737 GHz was obtained at x = 0.28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, and D.S. Cannell, J. Eur. Ceram. Soc. 1, 1723 (2001).

    Article  Google Scholar 

  2. N. Ichinose and K. Mutoh, J. Eur. Ceram. Soc. 23, 2455 (2003).

    Article  Google Scholar 

  3. K. Ezaki, Y. Baba, H. Takahashi, H. Shibata, and S. Nakano, Jpn. J. Appl. Phys. 32, 4319 (1993).

    Article  Google Scholar 

  4. Q. Zeng, W. Li, J.L. Shi, J.K. Guo, H. Chen, and M.L. Liu, J.␣Eur. Ceram. Soc. 27, 261 (2007).

    Article  Google Scholar 

  5. Y. Ota, K.I. Kakimoto, H. Ohsato, and T. Okawa, J. Eur. Ceram. Soc. 24, 1755 (2004).

    Article  Google Scholar 

  6. K.W. Tay, Y.P. Fu, and T.Y. Huang, Ceram. Int. 35, 3195 (2009).

    Article  Google Scholar 

  7. K.H. Yoon, M.S. Park, J.Y. Cho, and E.S. Kim, J. Eur. Ceram. Soc. 23, 2423 (2003).

    Article  Google Scholar 

  8. Y.B. Chen, C.L. Huang, and S.H. Lin, Mater. Lett. 60, 3591 (2006).

    Article  Google Scholar 

  9. C.S. Hsu, C.L. Huang, J.F. Tseng, and C.C. You, Ceram. Int. 30, 2067 (2004).

    Article  Google Scholar 

  10. H. Zheng, I.M. Reaney, D. Muir, T. Price, and D.M. Iddles, J. Eur. Ceram. Soc. 27, 4479 (2007).

    Article  Google Scholar 

  11. E.Z. Li, S.X. Duan, S.M. Sun, H. Li, Y.A. Mi, X.H. Zhou, and S.R. Zhang, J. Electron. Mater. 42, 3519 (2013).

    Article  Google Scholar 

  12. H.F. Zhou, H. Wang, K.C. Li, H.B. Yang, M.H. Zhang, and X. Yao, J. Electron. Mater. 38, 711 (2009).

    Article  Google Scholar 

  13. X. Chen, W. Zhang, B. Zalinska, I. Sterianou, S. Bai, and I.M. Reaney, J. Am. Ceram. Soc. 95, 3207 (2012).

    Article  Google Scholar 

  14. X.Y. Chen, S.X. Bai, and W.J. Zhang, J. Alloys Compd. 541, 132 (2012).

    Article  Google Scholar 

  15. W.J. Zhang, X.Y. Chen, and S.X. Bai, Ceram. Int. 39, 3957 (2013).

    Article  Google Scholar 

  16. Y.J. Zhao, R.X. Huang, R.Z. Liu, X.L. Wang, and H.P. Zhou, Ceram. Int. 39, 425 (2013).

    Article  Google Scholar 

  17. C. Busuioc and S.I. Jinga, Ceram. Int. 40, 5931 (2014).

    Article  Google Scholar 

  18. G.H. Chen, J.C. Di, H.R. Xu, M.H. Jiang, and C.L. Yuan, J.␣Am. Ceram. Soc. 95, 1394 (2012).

    Article  Google Scholar 

  19. S.Q. Yu, S.R. Zhang, B. Tang, X.H. Zhou, and Y.W. Fang, Ceram. Int. 38, 613 (2012).

    Article  Google Scholar 

  20. Y.H. Fang, A. Hu, S.X. Ouyang, and J.J. Oh, J. Eur. Ceram. Soc. 21, 2745 (2001).

    Article  Google Scholar 

Download references

Acknowledgement

Financial support of the National Natural Science Foundation of China (Grants No. 11464006), the Natural Science Foundation of Guangxi (Grants No. 2014GXNSFBA118254), the research fund of Guangxi Key Laboratory of Information Materials through 1210908-209-Z, 1210908-05-Z, 1210908-207-Z and Guangxi Experiment Center of Information Science through 20130115 are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Chen, G., Yang, T. et al. Microstructures and Microwave Dielectric Properties of Low-Temperature Fired Ca0.8Sr0.2TiO3-Li0.5Sm0.5TiO3 Ceramics with Bi2O3-2B2O3 Addition. J. Electron. Mater. 44, 263–270 (2015). https://doi.org/10.1007/s11664-014-3422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3422-9

Keywords

Navigation