Skip to main content
Log in

Structural, Magnetic, and Reflection Loss Characteristics of Ni/Co/Sn-Substituted Strontium Ferrite/Functionalized MWCNT Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni/Co/Sn-substituted strontium ferrite [SrFe12−x (Ni0.5Co0.5Sn) x/2O19]/multiwalled carbon nanotube (MWCNT) nanocomposites were produced by assembling ferrite particles on the external surfaces of MWCNTs. Various techniques including x-ray diffraction (XRD) analysis, transmission electron microscopy, field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FTIR) spectroscopy were used to demonstrate the successful attachment of ferrite particles onto the external surfaces of the MWCNTs. XRD analysis and FTIR spectroscopy confirmed the presence of strontium ferrite and carbon nanotube phases in ferrite and nanocomposite samples, respectively. FE-SEM micrographs indicated the formation of ferrite particles on the outer surfaces of MWCNTs in nanocomposite samples. Furthermore, vibrating-sample magnetometer (VSM) and reflection loss (RL) measurements were performed to assess the magnetic and microwave characteristics of the synthesized samples. VSM loops confirmed a relatively strong dependence of the saturation magnetization and coercivity on the volume percentage of MWCNTs. With the introduction of MWCNTs or an increase in the substitution, the saturation magnetization and coercivity were decreased. The RL properties of the nanocomposites were investigated in the 8 GHz to 12 GHz frequency range. The sample with 80 wt.% nanocomposite content showed a maximum RL of −35 dB at 8.3 GHz with a 4 GHz absorption bandwidth over the extended frequency range of 8 GHz to 12 GHz for absorber thickness of 1.8 mm. The RL evaluations indicated that these nanocomposites have high potential for application as wide-band electromagnetic wave absorbers at GHz frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Mata-Zamora, H. Montiel, G. Alvarez, J.F. Barrón, H. Arriola, J.M. Saniger, and R. Valenzuela, J. Magn. Magn. Mater. 320, 139 (2008).

    Article  Google Scholar 

  2. A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J. Magn. Magn. Mater. 302, 429 (2006).

    Article  Google Scholar 

  3. A. Ghasemi, S. Javadpour, X. Liu, and A. Morisako, IEEE Trans. Magn. 47, 4310 (2011).

    Article  Google Scholar 

  4. K.M. Lim, M.C. Kim, K.A. Lee, and C.G. Park, IEEE Trans. Magn. 39, 1836 (2003).

    Article  Google Scholar 

  5. S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, and Y. Yoshida, Mater. Trans. 39, 1080 (1998).

    Article  Google Scholar 

  6. J.R. Liu, M. Itoh, and K. Machida, Appl. Phys. Lett. 83, 4017 (2003).

    Article  Google Scholar 

  7. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002).

    Article  Google Scholar 

  8. A.N. Yusoff and M.H. Abdullah, J. Magn. Magn. Mater. 269, 271 (2004).

    Article  Google Scholar 

  9. J.R. Jauchem, K.L. Ryan, and M.R. Frei, Bio Electromagn. 21, 159 (2000).

    Google Scholar 

  10. B. Veyret, C. Bouthet, P. Deschaux, R. Deseze, M. Geffard, and J. Joussot-Dubien, Bio Electromagn. 12, 47 (1999).

    Google Scholar 

  11. E. Ritcher, T. Berman, E. Ben-Michael, R. Laster, and J.B. Westin, Int. J. Occup. Environ. Health 6, 187 (2000).

    Google Scholar 

  12. X. Qi, Y. Yang, W. Zhong, Y. Deng, C. Au, and Y. Du, J. Solid State Chem. 182, 2691 (2009).

    Article  Google Scholar 

  13. Y. Liu, W. Jiang, L. Xu, X. Yang, and F. Li, Mater. Lett. 63, 2526 (2009).

    Article  Google Scholar 

  14. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, and X. Liu, J. Magn. Magn. Mater. 323, 1006 (2011).

    Article  Google Scholar 

  15. M. Han and L. Deng, Appl. Phys. Lett. 90, 011108 (2007).

    Article  Google Scholar 

  16. L. Zhang, Y. Wang, and Q.Q. Ni, Mater. Chem. Phys. 124, 1029 (2010).

    Article  Google Scholar 

  17. J. Wu and L. Kong, Appl. Phys. Lett. 84, 4956 (2004).

    Article  Google Scholar 

  18. H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, D.A. Pejakovic, J.W. Yoo, and A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004).

    Article  Google Scholar 

  19. H. Cao, M. Zhu, Y. Li, J. Liu, Z. Ni, and Z. Qin, J. Solid State Chem. 180, 3218 (2007).

    Article  Google Scholar 

  20. P.K. Tyagi, M.K. Singh, M. Abha, P. Umesh, D.S. Misra, and E.N. Titus, et al., Thin Solid Films 469–470, 127 (2004).

    Article  Google Scholar 

  21. G. Korneva, H.H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, and J.C. Bradley, et al., Nano Lett. 5, 879 (2005).

    Article  Google Scholar 

  22. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, and H. Wang, Compos. Sci. Tech. 69, 633 (2009).

    Article  Google Scholar 

  23. Z.D. Xu, L.Q. ling, Y. Yun, and Z.C. Rui, Synth. Met. 160, 866 (2010).

    Article  Google Scholar 

  24. C. Huiqun, Z. Meifang, and L. Yaogang, J. Solid State Chem. 179, 1208 (2006).

    Article  Google Scholar 

  25. A. Ghasemi, V. Šepelák, X. Liu, and A. Morisako, IEEE Trans. Magn. 47, 2800 (2011).

    Article  Google Scholar 

  26. D. Zhao, Q. Li, Y. Ye, and C. Zhang, Synth. Met. 160, 866 (2010).

    Article  Google Scholar 

  27. W. Jiang, Y. Liu, F. Li, J. Chu, and K. Chen, Mater. Sci. Eng. B 166, 132 (2010).

    Article  Google Scholar 

  28. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, and H. Wang, Mater. Chem. Phys. 116, 658 (2009).

    Article  Google Scholar 

  29. Z. Hao, Q.F. Liu, and J.B. Wang, J. Compos. Mater. 44, 389 (2010).

    Article  Google Scholar 

  30. Y. Zhang, M. Zhu, Q. Zhang, H. Yu, Y. Li, and H. Wang, J. Magn. Magn. Mater. 322, 326 (2010).

    Article  Google Scholar 

  31. R. Kozhuharova, M. Ritschel, D. Elefant, A. Graff, I. Mönch, T. Mühl, C.M. Schneider, and A. Leonhardt, J. Magn. Magn. Mater. 290–291, 250 (2005).

    Article  Google Scholar 

  32. S. Karmakar, S.M. Sharma, M.D. Mukadam, S.M. Yusuf, and A.K. Sood, J. Appl. Phys. 97, 054306 (2005).

    Article  Google Scholar 

  33. A. Ghasemi, S.E. Shirsath, X. Liu, and A. Morisako, J. Appl. Phys. 109, 07A507 (2011).

    Google Scholar 

  34. S.M. Abbas, R. Chatterjee, A.K. Dixit, A.V.R. Kumar, and T.C. Goel, J. Appl. Phys. 101, 074105 (2007).

    Article  Google Scholar 

  35. A. Ghasemi, J. Magn. Magn. Mater. 323, 3133 (2011).

    Article  Google Scholar 

  36. A. Ghasemi, J. Magn. Magn. Mater. 324, 1080 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mousavinia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavinia, M., Ghasemi, A. & Paimozd, E. Structural, Magnetic, and Reflection Loss Characteristics of Ni/Co/Sn-Substituted Strontium Ferrite/Functionalized MWCNT Nanocomposites. J. Electron. Mater. 43, 2573–2583 (2014). https://doi.org/10.1007/s11664-014-3120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3120-7

Keywords

Navigation