Skip to main content
Log in

Growth of ZnSnN2 by Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Zn-IV-N2 family of materials represents a potential earth abundant element alternative to conventional compound semiconductor materials that are based on gallium and indium. While both ZnSiN2 and ZnGeN2 have been studied to some degree, very little is known about the narrow-gap member ZnSnN2. Here, we investigate the growth dynamics of crystalline ZnSnN2 through plasma-assisted molecular beam epitaxy. All films exhibit some degree of crystalline order regardless of growth conditions, although significant tin coverage was observed for films grown with low Zn:Sn flux ratio; Zn flux in particular became increasingly problematic at increased substrate temperatures designed to improve crystallinity. Single-crystal material was achieved through careful optimization of growth parameters. Regardless of deposition conditions or substrate choice, however, all films exhibit a monoclinic structure as opposed to the predicted orthorhombic lattice; this can be directly attributed to sublattice disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Tolcin, in Mineral Commodity Summaries 2013 (U.S. Geological Survey, Reston, VA, 2013), pp. 74–76.

  2. A.C. Tolcin, in Mineral Commodity Summaries 2013 (U.S. Geological Survey, Reston, VA, 2013), pp. 188–189.

  3. J.F. Carlin, in Mineral Commodity Summaries 2013 (U.S. Geological Survey, Reston, VA, 2013), pp. 170–171.

  4. A. Punya, W.R.L. Lambrecht, and M. van Schilfgaarde, Phys. Rev. B 84, 165204 (2011).

    Article  Google Scholar 

  5. N. Feldberg, B. Keen, J.D. Aldous, D.O. Scanlon, P.A. Stampe, R.J. Kennedy, R.J. Reeves, T.D. Veal and S.M. Durbin, in Proceedings of the IEEE Photovoltaic Specialists Conference (2012), 002524.

  6. N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, Iii, T.Y. Jen, R.S. Goldman, T.D. Veal, and S.M. Durbin, Appl. Phys. Lett. 103, 042109 (2013).

    Article  Google Scholar 

  7. C.M. Bekele (Doctoral thesis, Case Western Reserve University, 2007).

  8. K. Du, C. Bekele, C.C. Hayman, J.C. Angus, P. Pirouz, and K. Kash, J. Cryst. Growth 310, 1057 (2008).

    Article  Google Scholar 

  9. M. Maunaye and J. Lang, Mater. Res. Bull. 5, 793 (1970).

    Article  Google Scholar 

  10. K.T.T. Misaki, D. Sakai, A. Wakahara, H. Okada, and A. Yoshida, Phys. Status Solidi 0, 188 (2002).

    Article  Google Scholar 

  11. T. Cloitre, A. Sere, and R.L. Aulombard, Superlattice Microstruct. 36, 377 (2004).

    Article  Google Scholar 

  12. T. Endo, Y. Sato, H. Takizawa, and M. Shimada, J. Mater. Sci. Lett. 11, 424 (1992).

    Article  Google Scholar 

  13. L. Lahourcade, N.C. Coronel, K.T. Delaney, S.K. Shukla, N.A. Spaldin, and H.A. Atwater, Adv. Mater. 25, 2562 (2013).

    Article  Google Scholar 

  14. P.C. Quayle, K. He, J. Shan, and K. Kash, Synthesis, Lattice Structure, and Band Gap of ZnSnNQ (Cambridge: MRS Communications, 2013), pp. 1–4.

    Google Scholar 

  15. T.R. Paudel and W.R.L. Lambrecht, Phys. Rev. B 78, 115204 (2008).

    Article  Google Scholar 

  16. J.D. McKinley and J.E. Vance, J. Chem. Phys. 22, 1120 (1954).

    Article  Google Scholar 

  17. G. Köblmuller, C.S. Gallinat, S. Bernardis, J.S. Speck, G.D. Chern, E.D. Readinger, H. Shen, and M. Wraback, Appl. Phys. Lett. 89, 071902 (2006).

    Article  Google Scholar 

  18. T.D. Veal, P.D.C. King, P.H. Jefferson, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff, P.A. Anderson, S.M. Durbin, D. Muto, H. Naoi, and Y. Nanishi, Phys. Rev. B 76, 075313 (2007).

    Article  Google Scholar 

  19. S. Francoeur, G.A. Seryogin, S.A. Nikishin, and H. Temkin, Appl. Phys. Lett. 76, 2017 (2000).

    Article  Google Scholar 

  20. M. Futsuhara, K. Yoshioka, and O. Takai, Thin Solid Films 322, 274 (1998).

    Article  Google Scholar 

  21. N. Scotti, W. Kockelmann, J. Senker, S. Traßel, and H. Jacobs, Z. Anorg. Allg. Chem. 625, 1435 (1999).

    Article  Google Scholar 

  22. J.E. Van Nostrand, J.D. Albrecht, R. Cortez, K.D. Leedy, B. Johnson, and M.J. O’Keefe, J. Electron. Mater. 34, 1349 (2005).

    Article  Google Scholar 

  23. M. Wintenberger, M. Maunaye, and Y. Laurent, Mater. Res. Bull. 8, 1049 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Grant DMR1244887 (program manager Charles Ying), and NSF Grant 0605734 (FAMU). Work performed at the University of Liverpool was supported by EPSRC Grant EP/G004447/2. D. O. Scanlon and R. J. Reeves are acknowledged for helpful conversations, and B. Keen and Y. Yao are acknowledged for assistance with the MBE system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Durbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldberg, N., Aldous, J.D., Stampe, P.A. et al. Growth of ZnSnN2 by Molecular Beam Epitaxy. J. Electron. Mater. 43, 884–888 (2014). https://doi.org/10.1007/s11664-013-2962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2962-8

Keywords

Navigation