Skip to main content
Log in

Thermoelectric Enhancement in Polyaniline Composites with Polypyrrole-Functionalized Multiwall Carbon Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work suggests a facile method to improve the thermoelectric properties of polyaniline (PANi) composites. Carbon multiwall nanotubes (MWNTs) were noncovalently functionalized with polypyrrole (PPy-MWNTs) based on in situ polymerization, and these PPy-MWNTs were used to synthesize PPy-MWNT/PANi composites. The surface-functionalized PPy nanolayer on the MWNTs was found to yield a homogeneous dispersion of MWNTs and strong interfacial adhesion. The resulting composites demonstrated a remarkable enhancement in both electrical conductivity and Seebeck coefficient, and exhibited a high power factor of 3.1 μW/m K2 compared with the values of 0.006 μW/m K2 for PANi and 0.1 μW/m K2 for MWNT/PANi composite at 28.6 wt.% MWNT loading. The obtained results indicate that this method is useful for synthesizing conductive polymer composites with improved thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  3. D. Medlin and G. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  Google Scholar 

  4. X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  5. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  6. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  7. O. Bubnova and X. Crispin, Energy Environ. Sci. 5, 9345 (2012).

    Article  Google Scholar 

  8. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, and C. Yu, ACS Nano 4, 513 (2009).

    Article  Google Scholar 

  9. C. Yu, Y.S. Kim, D. Kim, and J.C. Grunlan, Nano Lett. 8, 4428 (2008).

    Article  Google Scholar 

  10. C. Meng, C. Liu, and S. Fan, Adv. Mater. 22, 535 (2010).

    Article  Google Scholar 

  11. Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano 4, 2445 (2010).

    Article  Google Scholar 

  12. X.L. Xie, Y.W. Mai, and X.P. Zhou, Mater. Sci. Eng. R 49, 89 (2005).

    Article  Google Scholar 

  13. A. Hirsch, Angew. Chem. Int. Ed. 41, 1853 (2002).

    Article  Google Scholar 

  14. J. Zhao, J.P. Lu, J. Han, and C.K. Yang, Appl. Phys. Lett. 82, 3746 (2003).

    Article  Google Scholar 

  15. P. Petrov, F. Stassin, C. Pagnoulle, and R. Jérôme, Chem. Commun. 2904 (2003).

  16. J. Wang, Y. Xu, X. Chen, and X. Sun, Compos. Sci. Technol. 67, 2981 (2007).

    Article  Google Scholar 

  17. A. Ramanavičius, A. Ramanavičienė, and A. Malinauskas, Electrochim. Acta 51, 6025 (2006).

    Article  Google Scholar 

  18. L.Z. Fan and J. Maier, Electrochem. Commun. 8, 937 (2006).

    Article  Google Scholar 

  19. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources 181, 172 (2008).

    Article  Google Scholar 

  20. R. Chan Yu King, F. Roussel, J.-F. Brun, and C. Gors, Synth. Met. 162, 1348 (2012).

    Article  Google Scholar 

  21. T.M. Wu, H.L. Chang, and Y.W. Lin, Compos. Sci. Technol. 69, 639 (2009).

    Article  Google Scholar 

  22. K. Chu, C. Jia, W. Li, and P. Wang, Phys. Status Solidi A 210, 594 (2013).

    Article  Google Scholar 

  23. Y. Klein, S. Hébert, A. Maignan, S. Kolesnik, T. Maxwell, and B. Dabrowski, Phys. Rev. B 73, 052412 (2006).

    Article  Google Scholar 

  24. K. Chu, W. Li, and H. Dong, Appl. Phys. A 111, 221 (2013).

  25. K. Chu, C. Jia, and W. Li, Appl. Phys. A 110, 269 (2013).

    Article  Google Scholar 

  26. G.I. Mathys and V.T. Truong, Synth. Met. 89, 103 (1997).

    Article  Google Scholar 

  27. N.G. Sahoo, Y.C. Jung, H.H. So, and J.W. Cho, Synth. Met. 157, 374 (2007).

    Article  Google Scholar 

  28. J. Jin, T. Iyoda, C. Cao, Y. Song, L. Jiang, T.J. Li, and D.B. Zhu, Angew. Chem. Int. Ed. 113, 2193 (2001).

    Article  Google Scholar 

  29. E. Benseddik, M. Makhlouki, J. Bernede, S. Lefrant, and A. Proń, Synth. Met. 72, 237 (1995).

    Article  Google Scholar 

  30. K. Cheah, M. Forsyth, and V.T. Truong, Synth. Met. 101, 19 (1999).

    Article  Google Scholar 

  31. W. Maser, A. Benito, M. Callejas, T. Seeger, M. Martınez, J. Schreiber, J. Muszynski, O. Chauvet, Z. Osvath, and A. Koos, Mater. Sci. Eng. C 23, 87 (2003).

    Article  Google Scholar 

  32. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, and K. Tanabe, J. Am. Chem. Soc. 124, 104 (2002).

    Article  Google Scholar 

  33. Y.C. Liu and B.J. Hwang, Synth. Met. 113, 203 (2000).

    Article  Google Scholar 

  34. M.C. Bernard and A. Hugot-Le Goff, Synth. Met. 85, 1145 (1997).

    Article  Google Scholar 

  35. M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martínez, J.-M. Benoit, J. Schreiber, and O. Chauvet, Chem. Commun. 1450 (2001).

  36. M. Trojanowicz, Trac-Trend. Anal. Chem. 25, 480 (2006).

    Article  Google Scholar 

  37. J. Kim, Pure Appl. Chem. 74, 2031 (2002).

    Article  Google Scholar 

  38. L. Hu, D. Hecht, and G. Grüner, Nano Lett. 4, 2513 (2004).

    Article  Google Scholar 

  39. H. Sirringhaus, P. Brown, R. Friend, M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R.A. Janssen, E. Meijer, and P. Herwig, Nature 401, 685 (1999).

    Article  Google Scholar 

  40. M. Biercuk, M.C. Llaguno, M. Radosavljevic, J. Hyun, A.T. Johnson, and J.E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).

    Article  Google Scholar 

  41. K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, and H. Guo, Compos. Sci. Technol. 70, 298 (2010).

    Article  Google Scholar 

  42. K. Chu, C. Jia, L. Jiang, and W. Li, Mater. Des. 45, 407 (2013).

    Article  Google Scholar 

  43. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yu, HQ. Thermoelectric Enhancement in Polyaniline Composites with Polypyrrole-Functionalized Multiwall Carbon Nanotubes. J. Electron. Mater. 43, 1181–1187 (2014). https://doi.org/10.1007/s11664-013-2958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2958-4

Keywords

Navigation