Skip to main content

Advertisement

Log in

Direct Contact Resistance Evaluation of Thermoelectric Legs

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In developing intermediate temperature (300–700 °C) thermoelectric modules with high conversion efficiencies exceeding 10 %, the evaluation of the electrical contact resistance between the thermoelectric material and metallic electrode is a critical issue. In this work, a novel direct contact resistance measurement apparatus is proposed that enhances the previously reported extrapolation based erroneous contact resistance evaluation methods. The accuracy and resolution of this apparatus are investigated in detail, and the proposed novel contact resistance measurement exhibits sufficient performance to evaluate high efficiency thermoelectric modules. The presence of the Peltier effect in the direct current-induced contact resistance measurements is verified experimentally using the proposed apparatus. Two modified measurement parameters, i.e., the pulse shape input current and heat dissipating metallic block, are proposed and their effects in suppressing the unintended Peltier effect are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzdis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418. doi:10.1038/nature11439

    Article  Google Scholar 

  2. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846. doi:10.1021/ja111199y

    Article  Google Scholar 

  3. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton DVP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377. doi:10.1038/nature13184

    Article  Google Scholar 

  4. Hendricks T, Choate, WT (2006) Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery. Industrial Technologies Program, U.S. DOE. https://www1.eere.energy.gov/manufacturing/industries_technologies/imf/pdfs/teg_final_report_13.pdf

  5. Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431. doi:10.1146/annurev-matsci-062910-100445

    Article  Google Scholar 

  6. Park YS, Thompson T, Kim YS, Salvador JR, Sakamoto JS (2015) Protective enamel coating for n- and p-type skutterudite thermoelectric materials. J Mater Sci 50:1500–1512. doi:10.1007/s10853-014-8711-4

    Article  Google Scholar 

  7. Battiston S, Boldrini S, Fiameni S, Famengo A, Fabrizio M, Barison S (2012) Multilayered thin films for oxidation protection of Mg2Si thermoelectric material at middle–high temperatures. Thin Solid Films 526:150–154. doi:10.1016/j.tsf.2012.10.114

    Article  Google Scholar 

  8. Zawadzka K, Godlewska E, Mars K, Nocun M (2012) Oxidation resistant coatings for CoSb3. 9th European conference on thermoelectrics: ECT2011, 1449:231–234. doi: 10.1063/1.4731539

  9. Ebling D, Bartholomé K, Bartel M, Jägle M (2010) Module geometry and contact resistance of thermoelectric generators analyzed by multiphysics simulation. J Electron Mater 39:1376–1380. doi:10.1007/s11664-010-1331-0

    Article  Google Scholar 

  10. Caillat T, Fleurial JP, Snyder GJ, Zoltan A, Zoltan D, Borshchevsky A (1999) Development of a high efficiency thermoelectric unicouple for power generation applications. 18th international conference on thermoelectrics, pp. 473–476

  11. Liao CN, Lee CH, Chen WJ (2007) Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper. Electrochem Solid-State Lett 10:23–25. doi:10.1149/1.2749330

    Article  Google Scholar 

  12. Tanji Y, Nakagawa Y, Kisara K, Yasuoka M, Moriya S, Kumagai T, Niino M, Sato R (1999) Electric and thermal contact resistances of the new type thermoelectric module assembled by screwing method. 18th international conference on thermoelectrics, pp. 260–265

  13. Thimont Y, Lognoné Q, Goupil C, Gascoin F, Guilmeau E (2014) Design of apparatus for Ni/Mg2Si and Ni/MnSi1.75 contact resistance determination for thermoelectric legs. J Electron Mater 43:2023–2028. doi:10.1007/s11664-013-2940-1

    Article  Google Scholar 

  14. Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z (2013) Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J Mater Chem A 1:13093–13100. doi:10.1039/C3TA13456C

    Article  Google Scholar 

  15. Gupta RP, McCarty R, Sharp J (2014) Practical contact resistance measurement method for bulk Bi2Te3-based thermoelectric devices. J Electron Mater 43:1608–1612. doi:10.1007/s11664-013-2806-6

    Article  Google Scholar 

  16. Buist RJ, Roman SJ (1999) Development of a burst voltage measurement system for high-resolution contact resistance tests of thermoelectric heterojunctions. 18th international conference on thermoelectrics, pp 249–251

  17. Hogan TP, Downey A, Short J, D’Angelo J, Wu C, Quarez E, Androulakis J, Poudeu PF, Sootsman JR, Chung D, Kanatzidis MG, Mahanti SD, Timm EJ, Schock H, Ren F, Johnson J, Case ED (2007) Nanostructured thermoelectric materials and high-efficiency power-generation modules. J Electron Mater 36:704–710. doi:10.1007/s11664-007-0174-9

    Article  Google Scholar 

  18. de Boor J, Gloanec C, Kolb H, Sottong R, Ziolkowski P, Müller E (2015) Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators. J Alloys Compd 632:348–353. doi:10.1016/j.jallcom.2015.01.149

    Article  Google Scholar 

  19. Berger HH (1972) Contact resistance and contact resistivity. J Electrochem Soc 119:507–514

    Article  Google Scholar 

  20. Mengali OJ, Seiler MR (1962) Contact resistance studies on thermoelectric materials. Adv Energy Convers 2:59–68. doi:10.1016/0365-1789(62)90008-5

    Article  Google Scholar 

  21. Zhao D, Geng H, Chen L (2012) Microstructure contact studies for skutterudite thermoelectric devices. Int J Appl Ceram Technol 9:733–741. doi:10.1111/j.1744-7402.2011.02703.x

    Article  Google Scholar 

  22. Gancoli D (2009) Physics for scientists & engineers with modern physics, 4th edn. Prentice Hall, Upper Saddle River, p 658. ISBN 0-13-149508-9

    Google Scholar 

  23. Salvador JR, Cho JY, Ye Z, Moczygemba JE, Thompson AJ, Sharp JW, König JD, Maloney R, Thompson T, Sakamoto J, Wang H, Wereszczak AA, Meisner GP (2013) Thermal to electrical energy conversion of skutterudite-based thermoelectric modules. J Electron Mater 42:1389–1399. doi:10.1007/s11664-012-2261-9

    Article  Google Scholar 

  24. Muto A (2011) Thermoelectric device characterization and solar thermoelectric system modeling. Dissertation, University of Massachusetts Institute of Technology

Download references

Acknowledgments

This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER, B6-2448). This research was also supported by the K-Valley Research, Education, Development & Business Project (RED&B, N01150329) funded by the Korea Advanced Institute of Science and Technology (KAIST). This research was also supported by the National Research Foundation of Korea(NRF) Grant funded by the Korean Government(MSIP)(NRF-2015R1A5A1036133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Yoon, G. & Park, S. Direct Contact Resistance Evaluation of Thermoelectric Legs. Exp Mech 56, 861–869 (2016). https://doi.org/10.1007/s11340-016-0131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0131-8

Keywords

Navigation