Skip to main content
Log in

First-Principles Study of the Electronic Structure and Thermoelectric Properties of Al-Doped ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO materials doped with elements such as Al, Ga, etc. are of great interest for high-temperature thermoelectric applications. In this work, the effects of Al doping on the electronic structure and thermoelectric properties of the ZnO system are presented. The energy band structure and density of states of Al-doped ZnO were investigated using the projector-augmented plane wave pseudopotential method within the local density approximation. The calculated energy band structure was then used in combination with the Boltzmann transport equation to calculate the thermoelectric parameters of Al-doped ZnO. The electronic structure calculation showed that the position of the Fermi level of the doped sample was shifted to a higher energy level compared with the undoped material. The conduction band near the Fermi energy was a combination of hybridized Zn sp-orbitals and Al s-orbital. The calculated thermoelectric properties were compared with the experimental results, showing some agreement. For the Al-doped ZnO system, the Seebeck coefficient was shown to be negative and its absolute value increased with temperature. The electrical conductivity and electronic thermal conductivity followed the trend of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  Google Scholar 

  2. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).

    Article  Google Scholar 

  3. J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, and K. Watari, J. Eur. Ceram. Soc. 29, 1413 (2009).

    Article  Google Scholar 

  4. A. Zhou, L.S. Liu, P.C. Zhai, W.Y. Zhao, and Q.J. Zhang, J. Electron. Mater. 39, 1832 (2009).

    Article  Google Scholar 

  5. G.I. Ameereh, B.A. Hamad, and J.M. Khalifeh, Phys. Status Solidi B 246, 129 (2009).

    Article  Google Scholar 

  6. D.M. Rowe, Thermoelectrics and Its Energy Harvesting (Boca Raton, FL: CRC Press, 2012).

    Google Scholar 

  7. R. Plugaru, T. Sandu, and N. Plugaru, Results in Physics, vol. 2 (Elsevier ISSN: 2211-3797, 2012), pp. 190–197.

  8. K.P. Ong, D.J. Singh, and P. Wu, Phys. Rev. B. 83, 115110 (2011).

    Article  Google Scholar 

  9. P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, J. Non-cryst. Solids 358, 2096 (2012).

    Article  Google Scholar 

  10. A.R.H. Preston, B.J. Ruck, L.F.J. Piper, A. Demasi, K.E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Chai, and S.M. Durbin, Phys. Rev. B 78, 155114 (2008).

    Article  Google Scholar 

  11. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).

    Article  Google Scholar 

  12. F. Fuchs, J. Furthmuller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007).

    Article  Google Scholar 

  13. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D.C. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  14. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  15. P. Li, S.H. Deng, Y.B. Li, J. Huang, G.H. Liu, and L. Zhang, Phys. B 406, 3125 (2011).

    Article  Google Scholar 

  16. Ü. ÖzgÜr, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  17. H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, and E. Savary, J. Eur. Ceram. Soc. 31, 2957 (2011).

    Article  Google Scholar 

  18. K.F. Cai, E. Müller, C. Drašar, and A. Mrotzek, Mater. Sci. Eng. B 104, 45 (2003).

    Article  Google Scholar 

  19. N. Ma, J.-F. Li, B.P. Zhang, Y.H. Lin, L.R. Ren, and G.F. Chen, J. Phys. Chem. Solids 71, 1344–1349 (2010).

    Article  Google Scholar 

  20. X. Qu, W. Wang, S. Lv, and D. Jia, Solid State Commun. 151, 332 (2011).

    Article  Google Scholar 

  21. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supree Pinitsoontorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantrasee, S., Pinitsoontorn, S. & Moontragoon, P. First-Principles Study of the Electronic Structure and Thermoelectric Properties of Al-Doped ZnO. J. Electron. Mater. 43, 1689–1696 (2014). https://doi.org/10.1007/s11664-013-2834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2834-2

Keywords

Navigation