Skip to main content
Log in

NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Most research on Sn-Ni solder reactions has focused on the interfacial reactions with the substrate, whereas the microstructure which develops above the intermetallic layers has not been studied in detail. This paper shows that nonequilibrium NiSn4 forms during solidification of the bulk solder in Sn-Ni and Sn-electroless nickel immersion gold (ENIG) solder reactions. With both substrates, the bulk solder solidified to contain Sn-NiSn4 eutectic and primary Ni3Sn4 crystals, and the interfacial layers contained a Ni3Sn4 reaction layer on the Sn side. It is found that Cu, present from dissolution of Cu through cracks in the ENIG layer, promotes the formation of Sn-Ni3Sn4 eutectic. Thus, Sn-ENIG couples contained both Sn-NiSn4 and Sn-Ni3Sn4 eutectic. It is further shown that NiSn4 is not stable at soldering temperatures and that, during isothermal holding at 270°C to 220°C, NiSn4 transforms into Ni3Sn4 and liquid or β-Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  2. IPC-4552 (ANSI, Northbrook, 2002), p. 25.

  3. H.Y. Chen and C. Chen, J. Electron. Mater. 38, 338 (2009).

    Article  CAS  Google Scholar 

  4. D. Gur and M. Bamberger, Acta Mater. 46, 4917 (1998).

    Article  CAS  Google Scholar 

  5. S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).

    CAS  Google Scholar 

  6. W.J. Tomlinson and H.G. Rhodes, J. Mater. Sci. 22, 1769 (1987).

    Article  CAS  Google Scholar 

  7. S.K. Kang and V. Ramachandran, Scr. Metall. 14, 421 (1980).

    Article  CAS  Google Scholar 

  8. J. Gorlich, D. Baither, and G. Schmitz, Acta Mater. 58, 3187 (2010).

    Article  Google Scholar 

  9. J.W. Yoon, H.S. Chun, and S.B. Jung, J. Mater. Sci. 18, 559 (2007).

    CAS  Google Scholar 

  10. Y.C. Lin, K.J. Wang, and J.G. Duh, J. Electron. Mater. 39, 283 (2010).

    Article  CAS  Google Scholar 

  11. G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, W. Dai, and J.D. Luo, J. Mater. Sci. 21, 421 (2010).

    CAS  Google Scholar 

  12. J. Shen, Y.C. Chan, and S.Y. Liu, Acta Mater. 57, 5196 (2009).

    Article  CAS  Google Scholar 

  13. C. Schmetterer, H. Flandorfer, K.W. Richter, U. Saeed, M. Kauffman, P. Roussel, and H. Ipser, Intermetallics 15, 869 (2007).

    Article  CAS  Google Scholar 

  14. C. Lea, A Scientific Guide to Surface Mount Technology (Ayr: Electrochemical, 1988), p. 333.

  15. A.C. Harman (Proc. Tech. Program. Internepcon’78, Brighton, England, 1978), pp. 42–49.

  16. P.J. Kay and C.A. Mackay, Trans. Inst. Met. Finish. 54, 68 (1977).

    Google Scholar 

  17. J. Haimovich, Weld. J. 68, S102 (1989).

    Google Scholar 

  18. C.M. Chen and S.W. Chen, J. Mater. Res. 18, 1293 (2003).

    Article  CAS  Google Scholar 

  19. W.K. Choi and H.M. Lee, J. Electron. Mater. 28, 1251 (1999).

    Article  CAS  Google Scholar 

  20. I. Vitina, I. Pelece, V. Rubene, V. Belmane, M. Lubane, A. Krumina, and Z. Zarina, J. Adhes. Sci. Technol. 11, 835 (1997).

    Article  CAS  Google Scholar 

  21. C.H. Wang, C.Y. Kuo, H.H. Chen, and S.W. Chen, Intermetallics 19, 75 (2011).

    Article  Google Scholar 

  22. L.J. Zhang, L. Wang, X.M. Xie, and W. Kempe, IEEE Trans. Electron. Pakag. Manuf. 25, 284 (2002).

    Article  CAS  Google Scholar 

  23. W.J. Boettinger, M.D. Vaudin, M.E. Williams, L.A. Bendersky, and W.R. Wagner, J. Electron. Mater. 32, 511 (2003).

    Article  CAS  Google Scholar 

  24. O. Yukinori and K. Masayuki, Uyemura Tech. Rep. (Japan: Uyemura & Co., Ltd., Central Res. Lab, 2006).

  25. S.A. Belyakov and C.M. Gourlay, Intermetallics 25, 48 (2012).

    Article  CAS  Google Scholar 

  26. H. Matsuki, H. Ibuka, and H. Saka, Sci. Technol. Adv. Mater. 3, 261 (2002).

    Article  CAS  Google Scholar 

  27. G. Ghosh, J. Appl. Phys. 88, 6887 (2000).

    Article  CAS  Google Scholar 

  28. C.Y. Lin, C.C. Jao, C. Lee, and Y.W. Yen, J. Alloy Compd. 440, 333 (2007).

    Article  CAS  Google Scholar 

  29. Z. Chen, M. He, and G.J. Qi, J. Electron. Mater. 33, 1465 (2004).

    Article  CAS  Google Scholar 

  30. C.R. Lin, S.W. Chen, and C.H. Wang, J. Electron. Mater. 31, 907 (2002).

    Article  CAS  Google Scholar 

  31. C.Y. Li, G.J. Chiou, and J.G. Duh, J. Electron. Mater. 35, 343 (2006).

    Article  Google Scholar 

  32. C. Schmetterer, H. Flandorfer, C. Luef, A. Kodentsov, and H. Ipser, J. Electron. Mater. 38, 10 (2009).

    Article  CAS  Google Scholar 

  33. C.M. Gourlay, K. Nogita, J. Read, and A.K. Dahle, J. Electron. Mater. 39, 56 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Belyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, S.A., Gourlay, C.M. NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples. J. Electron. Mater. 41, 3331–3341 (2012). https://doi.org/10.1007/s11664-012-2277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2277-1

Keywords

Navigation