Skip to main content
Log in

Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich corner in the ternary Sn-Cu-Ni isotherm at 240°C

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metallurgical reactions between solders and under bump metallization (UBM) are key issues for the solder joint reliability in microelectronic packaging. A phase diagram consisting of solders and UBM materials are required to further understand the interfacial reactions and related phase transformation. In this study, series of ternary Sn-Cu-Ni alloys were designed, fabricated, and heat-treated at 240°C. Equilibrium phases of Sn, Ni3Sn4, and Cu6Sn5 were identified by XRD, and microstructure evidence in backscattered electron image (BEI) micrograph. Through detailed EPMA quantitative analysis, three acme compositions of the ternary region in the Sn-Cu-Ni isotherm near the Sn-rich corner were evaluated and determined. Furthermore, x-ray color mapping of tin, copper, and nickel were applied to study the phase distribution of the alloys with the aid of electron microprobe analysis (EPMA). According to the intensities of Sn, Cu, and Ni, collected by x-ray color mapping, special software was employed to map the corresponding concentrations on the Sn-Cu-Ni ternary isotherm. The degree of composition homogeneity and the phase distribution were further evaluated by phase-analysis techniques. Semiquantitative measurements by phase analysis can be extended to evaluate the phase boundaries with a statistical variation under 5% as compared to the quantitative analysis by EPMA. Finally, the isothermal section of the ternary Sn-Cu-Ni system near the Sn-rich corner at 240°C was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Loomans, S. Vaynman, G. Ghosh, and M.E. Fine,J. Electron. Mater. 23, 741 (1994).

    Article  CAS  Google Scholar 

  2. J.H. Lau,Flip-Chip Technologies (New York: McGraw-Hill, 1996).

    Google Scholar 

  3. D.S. Patterson, P. Eleniu, and J.A. Leal,Adv. Electron. Packag. 1, 337 (1997).

    Google Scholar 

  4. C.S. Chang, A. Oscilowski, and R.C. Bracken,IEEE Circuits and Devices Magazine 14, 45 (1998).

    Article  Google Scholar 

  5. A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta,J. Appl. Phys. 80, 2774 (1996).

    Article  CAS  Google Scholar 

  6. H.K. Kim, K.N. Tu, and P.A. Totta,Appl. Phys. Lett. 68, 2204 (1996).

    Article  CAS  Google Scholar 

  7. C.A. Harper,Electronic Packaging and Interconnection Handbook, 3rd ed. (New York: McGraw-Hill, 2000).

    Google Scholar 

  8. M. Abtew and G. Selvaduray,Mater. Sci. Eng. R 27, 95 (2001).

    Article  Google Scholar 

  9. J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei,JOM 45, 25 (1993).

    CAS  Google Scholar 

  10. H.D. Blair, T.Y. Pan, and J.M. Nicholson,Proc. of the 1998 48th Electronic Components and Technology Conference (Seattle, WA: IEEE, 1998), pp. 259–267.

    Google Scholar 

  11. K. Zeng and K.N. Tu,Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  12. C.C. Young, J.G. Duh, and S.Y. Tsai,J. Electron. Mater. 30, 1241 (2001).

    Article  CAS  Google Scholar 

  13. Y.G. Lee and J.G. Duh,J. Mater. Sci. 10 33 (1999).

    CAS  Google Scholar 

  14. Y.G. Lee and J.G. Duh,Mater. Charact. 42, 143 (1999).

    Article  CAS  Google Scholar 

  15. B.L. Young and J.G. Duh,J. Electron. Mater. 30, 878 (2001).

    Article  CAS  Google Scholar 

  16. S.K. Kang, R.S. Rai, and S. Purrshothaman,J. Electron. Mater. 25, 1113 (1996).

    Article  CAS  Google Scholar 

  17. J.W. Nah and K.W. Paik,IEEE Trans. Compon. Packag. Technol. 25, 32 (2002).

    Article  CAS  Google Scholar 

  18. K. Zeng, V. Vuorinen, and J.K. Kivilahti,IEEE Trans. Electron. Packag. Manuf. 25, 162 (2002).

    Article  CAS  Google Scholar 

  19. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao,J. Electron. Mater. 32, 1203 (2003).

    Article  CAS  Google Scholar 

  20. G. Ghosh,Acta Mater. 48, 3719 (2000).

    Article  CAS  Google Scholar 

  21. C.S. Huang, J.G. Duh, Y.M. Chen, and J.H. Wang,J. Electron. Mater. 32, 89 (2002).

    Article  Google Scholar 

  22. C.H. Lin, S.W. Chen, and C.H. Wang,J. Electron. Mater. 31, 907 (2002).

    Article  CAS  Google Scholar 

  23. K.N. Tu and K. Zeng,Mater. Sci. Eng. R34, 1 (2001).

    CAS  Google Scholar 

  24. C.S. Huang, J.H. Yeh, B.L. Young, and J.G. Duh,J. Electron. Mater. 31, 1230 (2002).

    Article  CAS  Google Scholar 

  25. C.S. Huang and J.G. Duh,J. Mater. Res. 18, 935 (2003).

    Article  CAS  Google Scholar 

  26. G.Y. Jang, C.S. Huang, L.Y. Hsiao, and J.G. Duh,J. Electron. Mater. 33, 1118 (2003).

    Article  Google Scholar 

  27. J.I. Goldstein,Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (New York: Plenum Press, 2003).

    Google Scholar 

  28. C.Y. Li and J.G. Duh,J. Mater. Res. 20, 3118 (2005).

    Article  CAS  Google Scholar 

  29. R.E. Reed-Hill,Physical Metallurgy Principles, 3rd ed. (Boston: PWS, 1994).

    Google Scholar 

  30. W.T. Chen, C.E. Ho, and C.R. Kao,J. Mater. Res. 17, 263 (2002).

    CAS  Google Scholar 

  31. G.Y. Jang and J.G. Duh,J. Electron. Mater. 34, 677 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CY., Chiou, GJ. & Duh, JG. Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich corner in the ternary Sn-Cu-Ni isotherm at 240°C. J. Electron. Mater. 35, 343–352 (2006). https://doi.org/10.1007/BF02692455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692455

Key words

Navigation