Skip to main content
Log in

Microvoid Formation at Solder–Copper Interfaces During Annealing: a Systematic Study of the Root Cause

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrodeposition conditions that contribute to microvoid formation during isothermal aging of Pb-free solder-electrodeposited copper were evaluated in a systematic series of processing experiments. The results of 2K full-factorial design of experiment are presented to show the effect of prescreened electroplating parameters such as brighteners, wetting agent, bath age, and current density on the propensity for microvoiding at solder–copper interfaces after annealing at 125°C for 40 days. It was found that the amount of microvoiding is greatly affected by bath age, wetting agent, brightener, and their interactions. Time-of-flight secondary-ion mass spectroscopy and glow discharge spectroscopy allowed us to establish a correlation between impurities incorporated in copper during electroplating and microvoiding at the solder–copper interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binary Alloy Phase Diagrams. American Society for Metals, Ohio (1986).

  2. W. Yang, R. Messler, and L. Felton, J. Electron. Mater. 23, 765 (1994).

    Article  CAS  Google Scholar 

  3. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  4. J.Y. Kim, Y. Jin, and T.Y. Lee, 57th Proceedings ECTC (2007).

  5. X. Lin and L. Luo, J. Electron. Mater. 37, 307 (2008).

    Article  CAS  Google Scholar 

  6. T. Mattila and J. Kivilahti, J. Electron. Mater. 34, 969 (2005).

    Article  CAS  Google Scholar 

  7. Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, 55th Proceedings ECTC (2005).

  8. Y.W. Wang, Y.W. Lin, and C.R. Kao, Microelectron. Reliab. 49, 248 (2009).

    Article  CAS  Google Scholar 

  9. L. Xu, and J. L. Hohn, 56th ECTC (2006).

  10. P. Borgesen, and D.W. Henderson, Fragility of Lead-Free Solder Joints, White Report (2004).

  11. P. Borgesen, Y. Liang, P. Kondos, D.W. Handerson, G. Servis, and W. Ju, K. Srihari, 57th Proceedings ECTC (2007).

  12. C. Handwerker, E. Erk, A. Hess, A. Squire, and M. Yarbrough, Going Green CARE INNOVATION (Vienna, 2006).

  13. J.Y. Kim and J. Yu, Appl. Phys. Lett. 92, 092109 (2008).

    Article  Google Scholar 

  14. Y. Liu, J. Wang, L. Yin, P. Kondos, P. Borgesen, D.W. Handerson, E.J. Cotts, and N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008).

    Article  CAS  Google Scholar 

  15. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Handerson, S. Bliznakov, E.J. Cotts, and N. Dimitrov, 58th ECTC, Orlando (2008).

  16. S. Kumar, C.A. Handwerker, X. Nie, J. Smetana, D. Love, J. Watkowski, R. Martinez, and R. Parker, Microvoid Formation at Electrodeposited Copper-Solder Interfaces During Annealing: A Preliminary Study of the Root Cause (Orlando: SMTA International, 2008).

  17. S. Kumar, C.A. Handwerker, and M.A. Dayananda, J .Phase Equilib. Diff. 32, 309 (2011).

    Article  CAS  Google Scholar 

  18. T.P. Moffat, B. Baker, D. Wheeler, and D. Josell, Electrochem. Solid State Lett. 6, C59 (2003).

    Article  CAS  Google Scholar 

  19. T.P. Moffat, D. Wheeler, and D. Josell, J. Electrochem. Soc. 151, C262 (2004).

    Article  CAS  Google Scholar 

  20. M. Stangl, J. Acker, V. Hoffman, W. Gruner, and K. Wetzig, Microchim. Acta 156, 159 (2006).

    Article  CAS  Google Scholar 

  21. M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig, Microelecron. Eng. 84, 54 (2007).

    Article  CAS  Google Scholar 

  22. M. Stangl, V. Dittel, J. Acker, V. Hoffman, W. Gruner, S. Strehle, and K. Wetzig, Appl. Surf. Sci. 252, 158 (2005).

    Article  CAS  Google Scholar 

  23. T.P. Moffat, D. Wheeler, M.D. Edelstein, and D. Josell, IBM J. Res. Dev. 49, 19 (2005).

    Article  CAS  Google Scholar 

  24. R.B. Stanko, N. Vasiljevik, J.K. Timothy, and C.J. Earl, J. Electrochem. Soc. 152, C196 (2005).

    Article  Google Scholar 

  25. F. Gao, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 37, 45 (2008).

    Article  CAS  Google Scholar 

  26. J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008).

    Article  CAS  Google Scholar 

  27. L. Yin, P. Borgesen, J. Therriault, and J. Wang, Thin Solid Films (2011, submitted).

  28. D.C. Montgomery, Design and Analysis of Experiments, 5th ed. (New York: Wiley, 1996), p. 392.

    Google Scholar 

  29. K.-W. Chen, L.-H. Hsu, J.-K. Huang, Y.-L. Wang, and K.-Y. Lo, J. Electrochem. Soc. 156, D448 (2009).

    Article  CAS  Google Scholar 

  30. B.N. Popov, K.-M. Yin, and R.E. White, J. Electrochem. Soc. 140, 1321 (1993).

    Article  CAS  Google Scholar 

  31. K.W. Chen, Y.L. Wang, L. Chang, F.Y. Li, and S.C. Chang, Surf. Coat. Technol. 200, 3112 (2006).

    Article  CAS  Google Scholar 

  32. L.W. Marlon, J.R. Lee, and P.M. Thomas, J. Electrochem. Soc. 153, C557 (2006).

    Article  Google Scholar 

  33. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  34. S. Kumar, Microvoid formation and Kirkendall effect in lead-free solder joints. Doctoral dissertation, Purdue University (2010).

  35. Y.J. Kim, J. Yu, and S.H. Kim, Acta Mater. 57, 5001 (2009).

    Article  CAS  Google Scholar 

  36. A.G. Guy, R.T. de Hoff, and C.B. Smith, ASM Trans. Q. 61, 314 (1968).

    CAS  Google Scholar 

  37. A. Paul, The Kirkendall effect in solid state diffusion. Doctoral dissertation, Eindhoven University of Technology (2004).

  38. A. Paul, C. Ghosh, and W.J. Boettinger, Metal. Mater. Trans. A 42A, 952 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Smetana, J., Love, D. et al. Microvoid Formation at Solder–Copper Interfaces During Annealing: a Systematic Study of the Root Cause. J. Electron. Mater. 40, 2415–2424 (2011). https://doi.org/10.1007/s11664-011-1768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1768-9

Keywords

Navigation