Skip to main content

Advertisement

Log in

Growth Mechanism of a Ternary (Cu,Ni)6Sn5 Compound at the Sn(Cu)/Ni(P) Interface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The growth mechanism of an interfacial (Cu,Ni)6Sn5 compound at the Sn(Cu) solder/Ni(P) interface under thermal aging has been studied in this work. The activation energy for the formation of the (Cu,Ni)6Sn5 compound for cases of Sn-3Cu/Ni(P), Sn-1.8Cu/Ni(P), and Sn-0.7Cu/Ni(P) was calculated to be 28.02 kJ/mol, 28.64 kJ/mol, and 29.97 kJ/mol, respectively. The obtained activation energy for the growth of the (Cu,Ni)6Sn5 compound layer was found to be close to the activation energy for Cu diffusion in Sn (33.02 kJ/mol). Therefore, the controlling step for formation of the ternary (Cu,Ni)6Sn5 layer could be Cu diffusion in the Sn(Cu) solder matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  ADS  Google Scholar 

  2. M.O. Alam, Y.C. Chan, and K.C. Hung, Microelectron. Reliab. 42, 1065 (2002).

    Article  Google Scholar 

  3. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2007).

    Article  CAS  Google Scholar 

  4. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  5. S.J. Wang, H.J. Kao, and C.Y. Liu, J. Electron. Mater. 33, 1130 (2004).

    Article  CAS  ADS  Google Scholar 

  6. G.Y. Yang, J.G. Duh, H. Takahashi, S.W. Lu, and J.C. Chen, J. Electron. Mater. 35, 1745 (2006).

    Article  ADS  Google Scholar 

  7. S.W. Chen, C.H. Wang, and S.K. Lin, J. Mater. Sci. Mater. Electron. 18, 19 (2007).

    Article  CAS  Google Scholar 

  8. M.L. Huang, T. Loeher, D. Manessis, L. Boettcher, A. Ostmann, and H. Reichl, J. Electron. Mater. 35, 181 (2006).

    Article  CAS  ADS  Google Scholar 

  9. C.H. Wang and S.W. Chen, Intermetallics 16, 531 (2008).

    Article  Google Scholar 

  10. H. Yu, V. Vuorinen, and J. Kivilahti, IEEE Trans. Electron. Packag. Manuf. 30, 293 (2007).

    Article  CAS  Google Scholar 

  11. D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, and J.K.L. Lai, J. Alloys Compd. 392, 192 (2005).

    Article  CAS  Google Scholar 

  12. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).

    Article  CAS  ADS  Google Scholar 

  13. C.N. Liao and C.T. Wei, J. Electron. Mater. 33, 1137 (2004).

    Article  CAS  ADS  Google Scholar 

  14. M.O. Alam and Y.C. Chan, J. Appl. Phys. 98, 123527 (2005).

    Article  ADS  Google Scholar 

  15. H.D. Blair, T. Pan, and J.M. Nicholson, Electronic, Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 1998), pp. 259–267.

  16. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T.S., Tseng, H.W., Lu, C.T. et al. Growth Mechanism of a Ternary (Cu,Ni)6Sn5 Compound at the Sn(Cu)/Ni(P) Interface. J. Electron. Mater. 39, 2382–2386 (2010). https://doi.org/10.1007/s11664-010-1339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1339-5

Keywords

Navigation