Skip to main content
Log in

Mn-Substitution Effect on Thermal Conductivity of Delafossite-Type Oxide CuFeO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have prepared the CuFe1−x Mn x O2 solid solution to enhance the thermoelectric performance of CuFeO2 by reducing its thermal conductivity κ. With increasing x above 0.4, the crystal structure changes from delafossite \( \left( {R\overline{3} m} \right) \) to crednerite (C2/m). CuFe0.5Mn0.5O2 exhibits the lowest κ value of 2.28 W/m K at the theoretical density, being about one-quarter of that of the end members, CuFeO2 and CuMnO2. We discuss the temperature dependence of κ in terms of a classical phonon transport model, and conclude that local structural modulation due to the mixture of undistorted FeO6 octahedra and distorted MnO6 octahedra in CuFe1−x Mn x O2 leads to the significant reduction of κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hayashi, T. Nozaki, and T. Kajitani, Jpn. J. Appl. Phys. 46, 5226 (2007).

    Article  CAS  ADS  Google Scholar 

  2. T. Nozaki, K. Hayashi, and T. Kajitani, J. Chem. Eng. Jpn. 40, 1205 (2007).

    Article  Google Scholar 

  3. T. Nozaki, K. Hayashi, and T. Kajitani, J. Electron. Mater. 38, 1282 (2009).

    Article  CAS  ADS  Google Scholar 

  4. R.D. Shannon, C.T. Prewitt, and D.B. Rogers, Inorg. Chem. 10, 719 (1971).

    Article  CAS  Google Scholar 

  5. I.D. Kondrashev, Sov. Phys. Crystallogr. 3, 703 (1960).

    Google Scholar 

  6. F. Izumi and T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000).

    Article  Google Scholar 

  7. J. Francl and W.D. Kingery, J. Am. Ceram. Soc. 37, 99 (1954).

    CAS  Google Scholar 

  8. H.W. Russell, J. Am. Ceram. Soc. 18, 1 (1935).

    Article  CAS  Google Scholar 

  9. A. Euken, VDI-Forschungsheft 353, 16 (1932).

    Google Scholar 

  10. A.D. Brailsford and K.G. Major, Br. J. Appl. Phys. 15, 313 (1964).

    Article  ADS  Google Scholar 

  11. M. Lalanne, A. Barnabe, F. Mathieu, and Ph. Tailhades, Inorg. Chem. 48, 6065 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. V. Ambegaokar, Phys. Rev. 114, 488 (1959).

    Article  CAS  ADS  Google Scholar 

  13. G.A. Slack, Solid State Phys. 34, 1 (1979).

    CAS  Google Scholar 

  14. O.A. Petrenko, G. Balakrishnan, M.R. Lees, D.McK. Paul, and A. Hoser, Phys. Rev. B 62, 8983 (2000).

    Article  CAS  ADS  Google Scholar 

  15. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  ADS  Google Scholar 

  16. C.G. Sivan Pillai and A.M. George, J. Phys. Chem. Solids 55, 479 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Grant-in-Aid for Scientific Research and for JSPS Fellows of the Ministry of Education, Science, Sports, and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, T., Hayashi, K. & Kajitani, T. Mn-Substitution Effect on Thermal Conductivity of Delafossite-Type Oxide CuFeO2 . J. Electron. Mater. 39, 1798–1802 (2010). https://doi.org/10.1007/s11664-010-1135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1135-2

Keywords

Navigation