Skip to main content
Log in

Effect of double doping, Li and Se, on the high-temperature thermoelectric properties of Cu2Te

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cuprous chalcogenide, Cu2Se, attracted attention due to its large Seebeck coefficient coupled with low thermal conductivity, facilitated by the presence of disordered Cu-ions in the structure of Cu–Se. This compound is thermally unstable prompting investigation of its analogue Cu2Te which has a lower figure-of-merit zT due to its high charge carrier concentration. In the present work, a dual substitution, both cation and anion by Li and Se, respectively, has been attempted to enhance zT. The Cu2−xLixTe1−ySey alloys have been synthesized by a simple, conventional arc melting process and investigated without subjecting to any further processing. The room temperature microstructure shows a plate-like layered nanostructure in the grains with the grains oriented in random directions. The alloys at room temperature have two polymorphic phases, superstructured hexagonal and orthorhombic, co-existing in all the alloys. The alloys exhibit a degenerate semiconducting behavior in the range 300–1000 K with the conductivity decreasing from ~ 3000 Scm−1 to 700 Scm−1. All the alloys show a hole dominant Seebeck coefficient which increases with temperature from ~ 30 to 135 μVK−1. The alloy with dual substitution, Li-0.1 and Se-0.03, has the highest power factor of 1.6 mWm−1 K−2 at 1000 K. It’s low thermal conductivity in the complete range < 1.5 Wm−1 K−1 results in increasing the zT to 1.0 at 1000 K, an increase of 130% compared to the undoped alloy. These alloys are found to be thermally and temporally stable with no significant power loss either due to thermal cycling or aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Hong, Z.G. Chen, J. Zou, Chin. Phys. B 27, 048403 (2018)

    Article  Google Scholar 

  2. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554–557 (2008)

    Article  CAS  Google Scholar 

  3. Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011)

    Article  CAS  Google Scholar 

  4. Y. Pei, A.D. LaLonde, N.A. Heinz, G.J. Snyder, Adv. Energy Mater. 2, 670–675 (2012)

    Article  CAS  Google Scholar 

  5. H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, E. Wagner, G. Bauer, Phys. E 13, 965–968 (2002). https://doi.org/10.1016/S1386-9477(02)00246-1

    Article  CAS  Google Scholar 

  6. F. El Akkad, B. Mansour, T. Hendeya, Mater. Res. Bull. 16, 535–539 (1981). https://doi.org/10.1016/0025-5408(81)90119-7

    Article  Google Scholar 

  7. C. Zhou, Y. Yu, Y.K. Lee, O. Cojocaru-Mirédin, B. Yoo, S.P. Cho, J. Im, M. Wuttig, T. Hyeon, I. Chung, J. Am. Chem. Soc. 140, 15535–15545 (2018). https://doi.org/10.1021/jacs.8b10448

    Article  CAS  Google Scholar 

  8. L. Yang, Z.G. Chen, G. Han, M. Hong, L. Huang, J. Zou, J. Mater. Chem. A 4, 9213–9219 (2016). https://doi.org/10.1039/c6ta02998a

    Article  CAS  Google Scholar 

  9. R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.Y. Chou, M.T. Agne, J. He, G.J. Snyder, X. Shi, L. Chen, Energy Environ. Sci. 10, 1928–1935 (2017). https://doi.org/10.1039/c7ee01737e

    Article  CAS  Google Scholar 

  10. K. Okamoto, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 10, 508 (1971). https://doi.org/10.1143/JJAP.10.508

    Article  CAS  Google Scholar 

  11. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. Snyder Jeffrey, Nat. Mater. 11, 422–425 (2012)

    Article  Google Scholar 

  12. A. Bohra, R. Bhatt, S. Bhattacharya, R. Basu, S. Ahmad, A. Singh, D.K. Aswal, S.K. Gupta, AIP Conf. Proc. 1731, 110010 (2016)

    Article  Google Scholar 

  13. M.M. Mallick, S. Vitta, J. Appl. Phys. 122, 024903 (2017). https://doi.org/10.1063/1.4993900

    Article  CAS  Google Scholar 

  14. K. Sridhar, K. Chattopadhyay, J. Alloys Compd. 264, 293–298 (1998)

    Article  CAS  Google Scholar 

  15. Y. He, T. Zhang, X. Shi, S.H. Wei, L. Chen, NPG Asia Mater. 7, e210 (2015). https://doi.org/10.1038/am.2015.91

    Article  CAS  Google Scholar 

  16. S. Ballikaya, H. Chi, J.R. Salvador, C. Uher, J. Mater. Chem. A 1, 12478 (2013)

    Article  CAS  Google Scholar 

  17. Y. Qiu, Y. Liu, J. Ye, J. Li, L. Lian, J. Mater. Chem. A 6, 18928–18937 (2018). https://doi.org/10.1039/c8ta04993a

    Article  CAS  Google Scholar 

  18. S. Sarkar, P.K. Sarswat, S. Saini, P. Mele, M.L. Free, Sci. Rep. 9, 8180 (2019). https://doi.org/10.1038/s41598-019-43911-2

    Article  CAS  Google Scholar 

  19. K. Zhao, K. Liu, Z. Yue, Y. Wang, Q. Song, J. Li, M. Guan, Q. Xu, P. Qiu, H. Zhu, L. Chen, X. Shi, Adv. Mater. 31, 1903480 (2019). https://doi.org/10.1002/adma.201903480

    Article  CAS  Google Scholar 

  20. M. Li, Y. Luo, G. Cai, X. Li, X. Li, Z. Han, X. Lin, D. Sarker, J. Cui, J. Mater. Chem. A 7, 2360–2367 (2019). https://doi.org/10.1039/c8ta10741f

    Article  CAS  Google Scholar 

  21. N. Vouroutzis, C. Manolikas, Phys. Status Solidi 111, 491–497 (1989). https://doi.org/10.1002/pssa.2211110213

    Article  CAS  Google Scholar 

  22. A.A. Sirusi, A. Page, C. Uher, J.H. Ross, J. Phys. Chem. Solids 106, 52–57 (2017). https://doi.org/10.1016/j.jpcs.2017.02.016

    Article  CAS  Google Scholar 

  23. L. Yu, K. Luo, S. Chen, C.-G. Duan, CrystEngComm 17, 2878–2885 (2015)

    Article  CAS  Google Scholar 

  24. Y. Zhang, B. Sa, J. Zhou, Z. Sun, Comput. Mater. Sci. 81, 163–169 (2014)

    Article  CAS  Google Scholar 

  25. A.S. Pashinkin, V.A. Fedorov, Inorg. Mater. 39, 539–554 (2003)

    Article  CAS  Google Scholar 

  26. Y.G. Asadov, L.V. Rustamova, G.B. Gasimov, K.M. Jafarov, A.G. Babajev, Phase Transitions 38, 247–259 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge DST and ISRO, Government of India and Central Facilities, Indian Institute of Technology Bombay for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Vitta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, M.M., Vitta, S. Effect of double doping, Li and Se, on the high-temperature thermoelectric properties of Cu2Te. J Mater Sci: Mater Electron 31, 4129–4134 (2020). https://doi.org/10.1007/s10854-020-02960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02960-4

Navigation