Skip to main content
Log in

Stability of Flip-Chip Interconnects Assembled with Al/Ni(V)/Cu-UBM and Eutectic Pb-Sn Solder During Exposure to High-Temperature Storage

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermal stability of flip-chip solder joints made with trilayer Al/Ni(V)/Cu underbump metalization (UBM) and eutectic Pb-Sn solder connected to substrates with either electroless Ni(P)-immersion gold (ENIG) or Pb-Sn solder on Cu pad (Cu-SOP) surface finish was determined. The ENIG devices degraded more than 50 times faster than the Cu-SOP devices. Microstructural characterization of these joints using scanning and transmission electron microscopy and ion beam microscopy showed that electrical degradation of the ENIG devices was a direct result of the conversion of the as-deposited Ni(V) barrier UBM layer into a porous fine-grained V3Sn-intermetallic compound (IMC). This conversion was driven by the Au layer in the ENIG surface finish. No such conversion was observed for the devices assembled on Cu-SOP surface finish substrates. A resistance degradation model is proposed. The model captures changes from a combination of phenomena including increased (1) intrinsic resistivity, (2) porosity, and (3) electron scattering at grain boundaries and surfaces. Finally, the results from this study were compared with results found in a number of published electromigration studies. This comparison indicates that degradation during current stressing in the Pb-Sn bump/ENIG system is in part due to current-crowding-induced Joule heating and the thermal gradients that result from localized Joule heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Miller, IBM J. Res. Dev., 250 (1969).

    Article  Google Scholar 

  2. see for example, J.H. Lau, Low Cost Flip Chip Technologies (New York: McGraw-Hill, 2000), chapter 2.

  3. B. Ebersberger, R. Bauer, and L. Alexa, Proc. 54th Electron. Comp. and Tech. Conf. (2004), p. 683.

  4. J.H. Lee, J.H Park, D.H. Shin, Y.H. Lee, and Y.S. Kim, J. Electron. Mater., 30, 1138 (2001).

    Article  ADS  CAS  Google Scholar 

  5. C.E. Ho, L.C. Shiau, and C.R. Kao, J. Electron. Mater., 31, 1264 (2002).

    Article  ADS  CAS  Google Scholar 

  6. K. Zeng, V. Vuorinen, Y.L. Lin, and C.R. Kao, J. Electron. Mater., 31, 584 (2002).

    Article  ADS  Google Scholar 

  7. K·S. Kim, S·H. Huh, and Suganama, J. Alloys and Compounds, 352, 226 (2003).

    Article  CAS  Google Scholar 

  8. A. Zribi, R. Kinyanjui, P. Borgesen, L. Zavalij, and E.J. Cotts, J. Electron. Mater., 54, 38 (2002).

    CAS  Google Scholar 

  9. S·K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G.G. Advocate jr., M. Giffin, C. Goldsmith, D.W. Henderson, T.A. Gosselin, D.E. King, J.J. Konrad, A. Sarkhel, and K.J. Puttlitz, IEEE Trans. On Electron. Pkg. Manuf., 25, 155 (2002).

    Article  CAS  Google Scholar 

  10. M.O. Alam, Y.C. Chan, and K·N. Tu, Chemistry of Mater., 15, 4340 (2003).

    Article  CAS  Google Scholar 

  11. Y.D. Jeon, K·W. Paik, A. Ostmann, and H. Reichl, J. Electron. Mater., 34, 80 (2005).

    Article  ADS  CAS  Google Scholar 

  12. W.T. Chen, C.E. Ho, and C.R. Kao, J. Mater. Res., 17, 2109 (2003).

    Google Scholar 

  13. K. Zeng and K·N Tu, Mater. Science and Eng., R.38, 55 (2002).

    Article  Google Scholar 

  14. C.E. Ho, Y.W. Lin, S.C. Yang, and C.R. Kao, Proc. 55th Electron. Comp. and Tech. Conf. (2005), p. 1134.

  15. K. O’Donnell, Lead Free Electron., 1 (2004).

  16. A.M. Minor and J.W. Morris jr., Metall. Mater. Trans. A, 31A, 798 (2000).

    Article  CAS  Google Scholar 

  17. F. Zhang, C.C. Chum, and M. Li, Proc. 52th Electron. Comp. and Tech. Conf. (2002), p. 726.

  18. L.C. Shiau, C.E. Ho, and C. R.Kao, Solder and Surface Mount Tech., 14/3, 25 (2002).

    Article  CAS  Google Scholar 

  19. T. Laurila, V. Vuorinen, T. Mattila, and J.K. Kivilahti, J. Electron. Mater., 34, 103 (2005).

    Article  ADS  CAS  Google Scholar 

  20. F. Stepniak, Proc. IMAPS (1999), p. 427.

  21. F. Stepniak, Microelectron. Rel., 41, 735 (2001).

    Article  Google Scholar 

  22. IPC-7095 (August 2000).

  23. R.J. Fields and S.R Low, Materials Performance Group Research Publication, http://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html (2005).

  24. W. Riedel, Electroless Nickel Plating (Metal Park, Ohio: ASM International, 1991), p. 103.

  25. N. Morton, B·W. James, G.H. Wostenholm, and N.A. Howard, J. Less-Common Metals, 64, 69 (1979).

    Article  CAS  Google Scholar 

  26. C. Case, ITRS Report Party 3: Interconnect, Solid State Technol. (March 2005).

  27. J.R. Black, IEEE Trans. Electron Devices ED-16, 338 (1969).

    Article  Google Scholar 

  28. S. Brandenburg and S. Yeh, Proc. SMI 98 (1998), p. 337.

  29. W.J. Choi, E.C·C. Yeh, and K·N. Tu, J. Appl. Phys., l94, 5665 (2003).

    Article  ADS  CAS  Google Scholar 

  30. Y.L. Lin, Y.S. Lai, C.M. Tsai, and C.R. Kao, J. Electron. Mater., 35, 2147 (2006).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. S. Mohoney for supplying Ref. 25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Osenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osenbach, J., Amin, A., Bachman, M. et al. Stability of Flip-Chip Interconnects Assembled with Al/Ni(V)/Cu-UBM and Eutectic Pb-Sn Solder During Exposure to High-Temperature Storage. J. Electron. Mater. 38, 303–324 (2009). https://doi.org/10.1007/s11664-008-0599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0599-9

Keywords

Navigation