Skip to main content
Log in

Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO nanostructures with different morphologies and sizes were synthesized on silicon substrate simply by the thermal evaporation of high-purity metallic zinc powder in the presence of oxygen without the use of any catalyst or additives. It was observed that the substrate temperature and the distance of the substrate from the source material play a critical role to determine the morphologies and sizes of the deposited structures. Scanning electron microscopic observations revealed that different types of nano- and microstructures, such as ZnO pyramid-shaped nanotowers, nanowires attached with the sheet-like structures, nanorods, microcages, and microtubes were obtained at different temperature zones with specific distances of the substrate from the source material. High-resolution transmission electron microscopy and x-ray diffraction studies confirm that the deposited products are single crystalline with wurtzite hexagonal structures. The room-temperature photoluminescence spectra of all the deposited structures displayed a strong near-band-edge emission with negligible green emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, and H.W. White, J. Appl. Phys. 200, 88 (2001).

    Google Scholar 

  2. R.F. Service, Science 276, 895 (1997).

    Article  CAS  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  4. C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 838 (2003).

    Article  CAS  Google Scholar 

  5. E.L. Paradis and A.J. Shuskus, Thin Solid Films 83, 131 (1976).

    Article  Google Scholar 

  6. T. Nagata, T. Shimura, A. Asida, N. Fujimura, and T. Ito, J. Cryst. Growth 237, 533 (2002).

    Article  Google Scholar 

  7. M. Kadota, Jpn. J. Appl. Phys. 36, 3076 (1997).

    Article  CAS  Google Scholar 

  8. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  CAS  Google Scholar 

  9. A. Sekar, S.H. Kim, A. Umar, and Y.B. Hahn, J. Cryst. Growth 277, 471 (2005).

    Article  CAS  Google Scholar 

  10. S.H. Kim, A. Umar, and Y.B. Hahn, Korean J. Chem. Eng. 22, 489 (2005).

    CAS  Google Scholar 

  11. A. Umar, S.H. Kim, K.S. Nahm, Y.S. Lee, and Y.B. Hahn, J. Cryst. Growth 282, 131 (2005).

    Article  CAS  Google Scholar 

  12. A. Umar, S. Lee, Y.S. Lee, K.S. Nahm, and Y.B. Hahn, J. Cryst. Growth 277, 479 (2005).

    Article  CAS  Google Scholar 

  13. B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 84, 4098 (2004).

    Article  CAS  ADS  Google Scholar 

  14. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  15. X.Y. Kong and Z.L. Wang, Nano Lett. 3, 1625 (2003).

    Article  CAS  Google Scholar 

  16. P.X. Gao and Z.L. Wang, Appl. Phys. Lett. 84, 2883 (2004).

    Article  CAS  ADS  Google Scholar 

  17. D. Zhao, Y. Liu, D. Shen, Y. Lu, L. Zhang, and X. Fan, J. Appl. Phys. 94, 5605 (2003).

    Article  CAS  ADS  Google Scholar 

  18. Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, and C. Lee, Appl. Phys. Lett. 83, 4631 (2003).

    Article  CAS  ADS  Google Scholar 

  19. H. Yan, R. He, J. Pham, and P. Yang, Adv. Mater. 15, 402 (2003).

    Article  CAS  Google Scholar 

  20. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  ADS  Google Scholar 

  21. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).

    Article  CAS  ADS  Google Scholar 

  22. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  23. E.I. Givargizov, J. Cryst. Growth 32, 20 (1975).

    Article  Google Scholar 

  24. S.S. Brenner and G.W. Sears, Acta Metall. Mater. 4, 268 (1956).

    Article  CAS  Google Scholar 

  25. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, Appl. Phys. Lett. 86, 24108 (2005).

    Article  CAS  Google Scholar 

  26. Q. Wei, G. Meng, X. An, Y. Hao, and L. Zhang, Nanotechnology 16, 2561 (2005).

    Article  CAS  ADS  Google Scholar 

  27. J.F. Conley, Jr., L. Stecker, and Y. Ono, Nanotechnology 16, 292 (2005).

    Article  CAS  ADS  Google Scholar 

  28. X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, Y.C. Liu, and X.W. Fan, Chem. Phys. Lett. 407, 91 (2005).

    Article  CAS  Google Scholar 

  29. X. Han, G. Wang, J. Jie, W.C.H. Choy, Y. Luo, T.I. Yuk, and J.G. Hou, J. Phys. Chem. B 109, 2733 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. G. Shen and C.-J. Lee, Cryst. Growth Des. 5, 1085 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umar, A., Im, Y.H. & Hahn, Y.B. Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties. J. Electron. Mater. 35, 758–765 (2006). https://doi.org/10.1007/s11664-006-0135-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0135-8

Key words

Navigation