Skip to main content
Log in

Spray deposition and characterization of zirconium-oxide thin films

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zirconium oxide films were prepared by the pyrosol process using zirconium acetylacetonate as source material onto clear fused quartz and (100) silicon at substrate temperatures ranging from 300°C to 575°C. X-ray diffraction (XRD) measurements show that samples prepared at substrate temperatures lower than 425°C are amorphous. Films deposited at higher temperatures and short deposition times show a cubic crystalline structure. However, for long deposition times, the samples show monoclinic crystalline structure. A similar phase transformation is observed on samples deposited at short time if they are annealed at high temperature. The cubic and monoclinic phases of the corresponding samples were confirmed by infrared (IR) and Raman spectroscopy, respectively. The ZrO2 films with cubic phase show an almost stoichiometric chemical composition and refractive index values of the order of 2.1 with an energy band gap of 5.47 eV. The current-density electric-field characteristics of metal-oxide semiconductor (MOS) structures show a small ledge from 2 MV/cm to 4.5 MV/cm, indicating current injection and charge trapping. For higher electric fields, the current is associated with oxygen ion diffusion through the zirconium oxide film. The dielectric breakdown is observed at 6 MV/cm, which is a value higher than those observed in the monoclinic and tetragonal phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shappir, A. Anis, and I. Pinsky, IEEE Trans. Elec. Dev. Ed-33, 442 (1986).

    CAS  Google Scholar 

  2. D.K. Fork, D.B. Fenner, G.A.N. Connell, J.M. Phillips, and T.H. Geballe, Appl. Phys. Lett. 57, 1137 (1990).

    Article  CAS  Google Scholar 

  3. X. Aslanoglou, P.A. Assimakopoulos, G. Trapalis, G. Kordas, M.A. Karukassides, and M. Pilakouta, Nucl. Instrum. Meth. Phys. Res. B118, 630 (1996).

    Google Scholar 

  4. H. Hasuyama, Y. Shima, K. Baba, G.K. Wolf, H. Martín, and F. Stippich, Nucl. Instrum. Meth. Phys. Res. B127/128, 827 (1997).

    Google Scholar 

  5. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, and Y. Nakamura, Solid State Ionics 79, 137 (1995).

    Article  CAS  Google Scholar 

  6. T.M. Miller and V.H. Grassian, J. Am. Chem. Soc. 117, 10969 (1995).

    Article  CAS  Google Scholar 

  7. T. Yao, T. Inui, and A. Ariyoshi, J. Am. Ceram. Soc. 79, 3329 (1996).

    Article  CAS  Google Scholar 

  8. C. Flamini, A. Giardini Guidoni, R. Teghil, and V. Marotta, Appl. Surf. Sci. 138/139, 344 (1999).

    Article  Google Scholar 

  9. R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, Thin Solid Films 338, 136 (1999).

    Article  CAS  Google Scholar 

  10. C.S. Hwang and H.J. Kim, J. Mater. Res. 8, 1361 (1993).

    CAS  Google Scholar 

  11. K.H. Muller, R.P. Netterfield, and P.J. Martin, Phys. Rev. B 35, 2934 (1987).

    Article  CAS  Google Scholar 

  12. J.S. Kim, H.A. Marzouk, and P.J. Rencroff, Thin Solid Films 254, 33 (1995).

    Article  CAS  Google Scholar 

  13. M. Matsuoka, S. Isotani, S. Miyake, S. Setsuhara, K. Ogata, and N. Kuratani, J. Appl. Phys. 80, 1177 (1996).

    Article  CAS  Google Scholar 

  14. Y.M. Sun, J. Lozano, H. Ho, H.J. Park, S. Veldaman, and J.M. White, Appl. Surf. Sci. 16, 115 (2000).

    Article  CAS  Google Scholar 

  15. Y.M. Gao, P. Wu, R. Kershaw, K. Dwight, and A. Wols, Mater. Res. Bull. 25, 871 (1990).

    Article  CAS  Google Scholar 

  16. M. Langlet and J.C. Jaubert, in Chemistry of Advanced Materials, Pyrosol Process or the Pyrolysis if an Ultrasonically Generated Aerosol, ed. C.N.R. Rao (Oxford: Blackwell Scientific, 1993), p. 55.

    Google Scholar 

  17. J.C. Viguie and J. Spitz, J. Electrochem. Soc. 122, 565 (1975).

    Article  Google Scholar 

  18. J. Aranovich, A. Ortiz, and R.H. Bube, J. Vac. Sci. Technol. 16, 994 (1979).

    Article  CAS  Google Scholar 

  19. W.A. Pliskin and R.P. Gnall, J. Electrochem. Soc. 111, 872 (1964).

    Article  CAS  Google Scholar 

  20. M. Matsuoka, S. Isotani, J.F.D. Chubaci, S. Miyake, Y. Setsuhara, K. Ogata, and N. Kuratani, J. Appl. Phys. 88, 3773 (2000).

    Article  CAS  Google Scholar 

  21. H.Y. Zhu, T. Hirata, and Y. Maramatsu, J. Am. Ceram. Soc. 50, 2843 (1992).

    Article  Google Scholar 

  22. L.A. Perez-Maqueda and E. Matijevic, J. Mater. Res. 12, 3286 (1997).

    CAS  Google Scholar 

  23. T.S. Kalkur and Y.C. Lu, Thin Solid Films 207, 193 (1992).

    Article  CAS  Google Scholar 

  24. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  CAS  Google Scholar 

  25. D. Reicher and K. Jungling, Appl. Opt. 36, 1626 (1997).

    Article  CAS  Google Scholar 

  26. R.N. Tauber, A.C. Dunbri, and R.E. Caffrey, J. Electrochem. Soc. 118, 747 (1971).

    Article  CAS  Google Scholar 

  27. P.G. Pai, S.S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A4, 698 (1986).

    Google Scholar 

  28. P. Barberis, T. Merle-Mejean, and P. Quintard, J. Nucl. Mater. 246, 232 (1997).

    Article  CAS  Google Scholar 

  29. M. Jouanne, J.F. Morhange, M. Kanehisa, E. Haro-Poniatowski, G.A. Fuentes, E. Torres, and E. Hernández Téllez, Phys. Rev. B 64, 155404 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, A., Alonso, J.C. & Haro-Poniatowski, E. Spray deposition and characterization of zirconium-oxide thin films. J. Electron. Mater. 34, 150–155 (2005). https://doi.org/10.1007/s11664-005-0226-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0226-y

Key words

Navigation