Skip to main content
Log in

Etching of mesa structures in HgCdTe

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mesa structures were etched in HgCdTe using different Br2/HBr/Ethylene glycol (EG) formulations. Etch rate and degree of anisotropy (A) were studied in detail for all of the combinations. Addition of EG to the conventional etchant gave A>0.5, with controllable etch rates. Optimum etchant composition was determined to be 2% Br2 in a 3:1 mixture of EG:HBr. This composition resulted in a good anisotropy factor of ∼0.6 and a reasonably optimum etch rate of ∼2.5 µm/min, with rms surface roughness of ∼2 nm. Kinetics of the etching reaction have also been studied for the optimum etchant concentration and an etching mechanism has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.R. Eddy, Jr., C.A. Hoffman, J.R. Meyer, and E.A. Dobisz, J. Electron. Mater. 22, 1055 (1993).

    CAS  Google Scholar 

  2. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Palkowski, J. Electron. Mater. 32, 816 (2003).

    Article  CAS  Google Scholar 

  3. J.D. Benson, A.J. Stoltz, A.W. Kalecyyu, M. Martinka, L.A. Almeida, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 31, 822 (2002).

    CAS  Google Scholar 

  4. J.F. Siliquini, J.M. Dell, C.A. Musca, and L. Faroane, Appl. Phys. Lett. 71, 52 (1998).

    Article  Google Scholar 

  5. J. White, R. Pal, J.M. Dell, C.A. Musca, J. Antoszwski, L. Faroane, and P. Burke, J. Electron. Mater. 30, 762 (2001).

    CAS  Google Scholar 

  6. E.P.G. Smith, C.A. Musca, D.A. Redfern, J.M. Dell, and L. Faroane, J. Vac. Sci. Technol. A17, 2503 (1995).

    Google Scholar 

  7. S. Hollander-Gleixner, H.G. Robinson, and L.R. Helms, J. Appl. Phys. 83, 1299 (1998).

    Article  Google Scholar 

  8. J.L. Miller, Principles of Infrared Technology (New York: Van Nostrand Reimhold, 1984), pp. 135–142.

    Google Scholar 

  9. T.H. Myers, A.N. Klymachov, C.M. Vitus, N.S. Dalal, D. Endres, K.A. Harris, R.W. Yanka, and L.M. Mohnkern, Appl. Phys. Lett. 66, 224 (1995).

    Article  CAS  Google Scholar 

  10. W. Chang, T. Lee, and W.M. Lau, J. Appl. Phys. 68, 4816 (1990).

    Article  CAS  Google Scholar 

  11. I.M. Kotina, L.M. Tukhkonen, G.V. Patsekina, A.V. Shchukarev, and G.M. Gusinskii Semicond. Sci. Technol. 13, 890 (1998).

    Article  CAS  Google Scholar 

  12. W.M. Moreau, Semiconductor Lithography Principles, Practices, and Materials (New York: Plenum Press, 1987), pp. 631–685.

    Google Scholar 

  13. David R. Rhiger, J. Electron. Mater. 22, 887 (1993).

    CAS  Google Scholar 

  14. R. Tenne, R. Brener, and R. Triboulet, J. Vac. Sci. Technol. A7, 2570 (1989).

    Google Scholar 

  15. B.S. Bahl and Arun Bahl, A Text Book of Organic Chemistry (Delhi, India: S. Chand and Company Ltd., 1987), pp. 238–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastav, V., Pal, R., Sharma, B.L. et al. Etching of mesa structures in HgCdTe. J. Electron. Mater. 34, 1440–1445 (2005). https://doi.org/10.1007/s11664-005-0203-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0203-5

Key words

Navigation