Skip to main content
Log in

Molecular dynamics study of nanosilver particles for low-temperature lead-free interconnect applications

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation was conducted to investigate the coalescence of Ag nanoparticles and their deposition on a gold substrate at various temperatures from 400 K to 1,000 K using the embedded atom method (EAM). Density distribution function, x-z plane projection, spreading index, and coalescence index were analyzed to gain more insight into the sintering and diffusion process. Simulation results showed that Ag and Au atoms can diffuse into each other significantly at a temperature of 1,000 K and reform the lattice structure after the temperature is cooled back to 400 K. Simulation data also demonstrated that even at a low temperature of 400 K, silver spheres can be collapsed and deposited on the substrate. Yet higher temperatures were helpful in enhancing the degree of collapsing and deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Jagt, IEEE Trans. Comp. Packaging Manufacturing Technol. Part A 21, 215 (1998).

    Article  CAS  Google Scholar 

  2. A.J. Lovinger, J. Adhes. 10, 1 (1979).

    CAS  Google Scholar 

  3. S. Asai, U. Saruta, M. Tobita, M. Takano, and Y. Miyashita, J. Appl. Polym. Sci. 56, 769 (1995).

    Article  CAS  Google Scholar 

  4. A.O. Ogunjimi, O. Boyle, D.C. Whalley, and D.J. Williams, J. Electron. Manuf. 2, 109 (1992).

    Article  CAS  Google Scholar 

  5. K. Gilleo, Solder. Surf. Mount Technol. 19, 12 (1995).

    Google Scholar 

  6. P.G. Harris, Solder. Surf. Mount Technol. 20, 19 (1995).

    Article  CAS  Google Scholar 

  7. J. Liu, ed., Conductive Adhesives for Electronics Packaging (Bristol, U.K.: Electrochemical Publications, 1999).

    Google Scholar 

  8. J. Lin, J. Drye, W. Lytle, T. Scharr, R. Subrahmanyan, and R. Sharma, IEEE Proc. 46th Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1996), pp. 1059–1068.

    Book  Google Scholar 

  9. J.C. Jagt, P.J.M. Beric, and G.F.C.M. Lijten, IEEE Trans. Components Packaging Manufacturing Technol. Part B 18, 292 (1995).

    Article  CAS  Google Scholar 

  10. M.A. Gaynes, R.H. Lewis, R.F. Saraf, and J.M. Roldan, IEEE Trans. Comp. Packaging Manufacturing Technol. Part B 18, 299 (1995).

    Article  CAS  Google Scholar 

  11. R. Dudek, H. Berek, T. Fritsch, and B. Michel, IEEE Trans. Comp. Packaging Manufacturing Technol. Part A 23, 462 (2000).

    CAS  Google Scholar 

  12. D. Klosterman, L. Li, and J.E. Morris, IEEE Trans. Comp. Packaging Manufacturing Technol. Part A 21, 23 (1998).

    Article  CAS  Google Scholar 

  13. D. Lu, Q.K. Tong, and C.P. Wong, IEEE Trans. Comp. Packaging Manufacturing Technol. Part C 22, 228 (1999).

    CAS  Google Scholar 

  14. D. Lu, Q.K. Tong, and C.P. Wong, IEEE Trans. Comp. Packaging Manufacturing Technol. 23, 620 (2000).

    CAS  Google Scholar 

  15. Q.K. Tong, G. Fredrickson, R. Kuder, and D. Lu, IEEE Proc. 49th Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1999), pp. 347–352.

    Google Scholar 

  16. G.R. Ruschau, S. Yoshikawa, and R.E. Newnhan, J. Appl. Phys. 72, 953 (1992).

    Article  CAS  Google Scholar 

  17. I. Dietrich, Z. Phys. 132, 231 (1952).

    Article  CAS  Google Scholar 

  18. C.P. Wong, K.S. Moon, and Y. Li, Georgia Tech. Corp. Invention Disclosure 2003, U.S. patent pending.

  19. P. Pawlow, Z. Phys. Chem. 65, 545 (1909).

    CAS  Google Scholar 

  20. H. Reiss and I.B. Wilson, J. Coll. Sci. 3, 551 (1948).

    Article  CAS  Google Scholar 

  21. K.M. Unruh, T.E. Huber, and C.A. Huber, Phys. Rev. B 48, 9022 (1993).

    Article  Google Scholar 

  22. M. Oda et al., Mater. Res. Soc. Symp. Proc. 704, 3 (2002).

    CAS  Google Scholar 

  23. L.J. Lewis, P. Jensen, and J.-L. Barrat, Phys. Rev. B 56, 2248 (1997).

    Article  CAS  Google Scholar 

  24. R. Ge, P.C. Clapp, and J.A. Rifkin, Surf. Sci. 426, L413 (1999).

  25. S.J. Zhao, S.Q. Wang, Z.Q. Yang, and H.Q. Ye, J. Phys.: Cond. Matter 13, 8061 (2001).

    Article  CAS  Google Scholar 

  26. H. Dong, K.S. Moon, and C.P. Wong, J. Electron. Mater. 33, 1326 (2004).

    Article  CAS  Google Scholar 

  27. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  28. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. Lett. 50, 1285 (1983).

    Article  Google Scholar 

  29. S.J. Plimpton and B.A. Hendrickson, MRS Proc. 291, 37 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Moon, KS. & Wong, C.P. Molecular dynamics study of nanosilver particles for low-temperature lead-free interconnect applications. J. Electron. Mater. 34, 40–45 (2005). https://doi.org/10.1007/s11664-005-0178-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0178-2

Key words

Navigation